Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203312879> ?p ?o ?g. }
- W3203312879 endingPage "135802" @default.
- W3203312879 startingPage "135790" @default.
- W3203312879 abstract "Landslides are one type of destructive and recurring natural calamities in the mountainous regions. The landslide occurrences often lead to immense damage to local infrastructure and loss of land, human lives and livestocks. Data-driven risk assessment of landslide risk plays a crucial role in preventing the incoming landslide occurrences and recurrences. In this research, we developed a human-centric framework using information-granules to perform risk assessment of a group of landslides. First, the density-based spatial clustering of applications with noise (DBSCAN) has been selected as the backbone unsupervised learning method to subclusters for landslide risk indication. The clustering outcomes are visualized via t-distributed stochastic neighbor embedding (t-SNE) in the 2-D embedding space. Second, the prototype points within the subclusters produced by DBSCAN are computed for granular construction. Third, interval-based information-granules are constructed and measured via coverage, specificity and area under the coverage-specificity curve (AUC). Last, with the optimal information-granules constructed, two risk measures namely Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are computed to interpret the rule-based information-granules with respect to the key attributes. Comparative experiments have also been performed against other benchmarking clustering approaches. Computational results indicate that the information-granules constructed from DBSCAN subclusters offered enhanced performance in reveal meaningful information-granules and provide promising results. The proposed approach can capture the main essence of landslide pattern with higher interpretability and help to reduce the computing overhead." @default.
- W3203312879 created "2021-10-11" @default.
- W3203312879 creator A5031705975 @default.
- W3203312879 creator A5041872340 @default.
- W3203312879 creator A5071038566 @default.
- W3203312879 creator A5076366709 @default.
- W3203312879 creator A5078727121 @default.
- W3203312879 creator A5084570636 @default.
- W3203312879 creator A5085185712 @default.
- W3203312879 date "2021-01-01" @default.
- W3203312879 modified "2023-09-26" @default.
- W3203312879 title "Landslide Risk Assessment Using Granular Fuzzy Rule-Based Modeling: A Case Study on Earthquake-Triggered Landslides" @default.
- W3203312879 cites W1853229964 @default.
- W3203312879 cites W1990063233 @default.
- W3203312879 cites W1991384931 @default.
- W3203312879 cites W2021563710 @default.
- W3203312879 cites W2057039778 @default.
- W3203312879 cites W2071164010 @default.
- W3203312879 cites W2077483615 @default.
- W3203312879 cites W2111349468 @default.
- W3203312879 cites W2115709314 @default.
- W3203312879 cites W2137486440 @default.
- W3203312879 cites W2200394127 @default.
- W3203312879 cites W2535619815 @default.
- W3203312879 cites W2560859876 @default.
- W3203312879 cites W2740924709 @default.
- W3203312879 cites W2765818285 @default.
- W3203312879 cites W2767702821 @default.
- W3203312879 cites W2787084639 @default.
- W3203312879 cites W2805380449 @default.
- W3203312879 cites W2894328777 @default.
- W3203312879 cites W2895016144 @default.
- W3203312879 cites W2905595676 @default.
- W3203312879 cites W2907493491 @default.
- W3203312879 cites W2923406153 @default.
- W3203312879 cites W2972534151 @default.
- W3203312879 cites W2990353568 @default.
- W3203312879 cites W3005806855 @default.
- W3203312879 cites W3033311740 @default.
- W3203312879 cites W3037125271 @default.
- W3203312879 cites W310439352 @default.
- W3203312879 cites W3122030515 @default.
- W3203312879 cites W3158540731 @default.
- W3203312879 cites W4210949798 @default.
- W3203312879 doi "https://doi.org/10.1109/access.2021.3116869" @default.
- W3203312879 hasPublicationYear "2021" @default.
- W3203312879 type Work @default.
- W3203312879 sameAs 3203312879 @default.
- W3203312879 citedByCount "1" @default.
- W3203312879 countsByYear W32033128792023 @default.
- W3203312879 crossrefType "journal-article" @default.
- W3203312879 hasAuthorship W3203312879A5031705975 @default.
- W3203312879 hasAuthorship W3203312879A5041872340 @default.
- W3203312879 hasAuthorship W3203312879A5071038566 @default.
- W3203312879 hasAuthorship W3203312879A5076366709 @default.
- W3203312879 hasAuthorship W3203312879A5078727121 @default.
- W3203312879 hasAuthorship W3203312879A5084570636 @default.
- W3203312879 hasAuthorship W3203312879A5085185712 @default.
- W3203312879 hasBestOaLocation W32033128791 @default.
- W3203312879 hasConcept C124101348 @default.
- W3203312879 hasConcept C127313418 @default.
- W3203312879 hasConcept C154945302 @default.
- W3203312879 hasConcept C17212007 @default.
- W3203312879 hasConcept C186295008 @default.
- W3203312879 hasConcept C187320778 @default.
- W3203312879 hasConcept C2781067378 @default.
- W3203312879 hasConcept C33704608 @default.
- W3203312879 hasConcept C41008148 @default.
- W3203312879 hasConcept C46576248 @default.
- W3203312879 hasConcept C73555534 @default.
- W3203312879 hasConceptScore W3203312879C124101348 @default.
- W3203312879 hasConceptScore W3203312879C127313418 @default.
- W3203312879 hasConceptScore W3203312879C154945302 @default.
- W3203312879 hasConceptScore W3203312879C17212007 @default.
- W3203312879 hasConceptScore W3203312879C186295008 @default.
- W3203312879 hasConceptScore W3203312879C187320778 @default.
- W3203312879 hasConceptScore W3203312879C2781067378 @default.
- W3203312879 hasConceptScore W3203312879C33704608 @default.
- W3203312879 hasConceptScore W3203312879C41008148 @default.
- W3203312879 hasConceptScore W3203312879C46576248 @default.
- W3203312879 hasConceptScore W3203312879C73555534 @default.
- W3203312879 hasFunder F4320335777 @default.
- W3203312879 hasLocation W32033128791 @default.
- W3203312879 hasOpenAccess W3203312879 @default.
- W3203312879 hasPrimaryLocation W32033128791 @default.
- W3203312879 hasRelatedWork W2186523764 @default.
- W3203312879 hasRelatedWork W2187492663 @default.
- W3203312879 hasRelatedWork W2368219397 @default.
- W3203312879 hasRelatedWork W2503866109 @default.
- W3203312879 hasRelatedWork W2959625647 @default.
- W3203312879 hasRelatedWork W3004596345 @default.
- W3203312879 hasRelatedWork W3097468641 @default.
- W3203312879 hasRelatedWork W3168814018 @default.
- W3203312879 hasRelatedWork W4290987788 @default.
- W3203312879 hasRelatedWork W2314379296 @default.
- W3203312879 hasVolume "9" @default.
- W3203312879 isParatext "false" @default.
- W3203312879 isRetracted "false" @default.