Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203313220> ?p ?o ?g. }
- W3203313220 endingPage "445" @default.
- W3203313220 startingPage "415" @default.
- W3203313220 abstract "Accurate and reliable breed identification of domestic animals from images is one of the most promising but challenging tasks in intelligent livestock management. Traditional methods for animal breed identification are very costly and time consuming. Therefore, there is a need for a faster and cheaper technique for animal breed identification, which can be used by anyone without much technical knowhow. Deep Learning based animal breed classification from images can be used to solve this problem. Recent developments in deep Convolutional Neural Network (CNN) has drastically improved the accuracy of image recognition systems, but choosing the optimal model for the required task is very important for best performance. In this study, the performance of nine different deep CNN-based models have been analyzed to find the optimal model which can precisely determine the breed identity of individual animals from its image. All nine CNN models have been separately trained end-to-end on Pig Breed Dataset and Goat Breed Dataset using a set of identical hyperparameters. From the results obtained it has been established that MobileNetV2 is the best deep-CNN model for Goat Breed Classification with 95.00% prediction accuracy and InceptionV3 is the best model for pig breed classification with 100.00% prediction accuracy. Breed classification performance of goat and pig obtained in this study have been compared with other techniques used for animal breed classification. Comparison results show that our CNN-based technique has performed on par with all other methods. With these encouraging results, it can be confidently stated that deep CNN-based models can be used for solving the animal breed classification problem with high accuracy and can be used as ready to use technology for intelligent livestock management." @default.
- W3203313220 created "2021-10-11" @default.
- W3203313220 creator A5019526114 @default.
- W3203313220 creator A5039143993 @default.
- W3203313220 creator A5048698256 @default.
- W3203313220 creator A5057206446 @default.
- W3203313220 creator A5070612272 @default.
- W3203313220 creator A5071678720 @default.
- W3203313220 creator A5087382143 @default.
- W3203313220 date "2021-01-01" @default.
- W3203313220 modified "2023-09-23" @default.
- W3203313220 title "Image-Based Identification of Animal Breeds Using Deep Learning" @default.
- W3203313220 cites W1229031887 @default.
- W3203313220 cites W1496650988 @default.
- W3203313220 cites W1531492214 @default.
- W3203313220 cites W1832500336 @default.
- W3203313220 cites W1861492603 @default.
- W3203313220 cites W1977175811 @default.
- W3203313220 cites W1977295328 @default.
- W3203313220 cites W1982025193 @default.
- W3203313220 cites W2031489346 @default.
- W3203313220 cites W2033390742 @default.
- W3203313220 cites W2042532720 @default.
- W3203313220 cites W2073908178 @default.
- W3203313220 cites W2097117768 @default.
- W3203313220 cites W2104657103 @default.
- W3203313220 cites W2108598243 @default.
- W3203313220 cites W2126194992 @default.
- W3203313220 cites W2183341477 @default.
- W3203313220 cites W2194775991 @default.
- W3203313220 cites W2247349754 @default.
- W3203313220 cites W2302255633 @default.
- W3203313220 cites W2413367505 @default.
- W3203313220 cites W2466113154 @default.
- W3203313220 cites W2515116636 @default.
- W3203313220 cites W2531409750 @default.
- W3203313220 cites W2561154116 @default.
- W3203313220 cites W2618530766 @default.
- W3203313220 cites W2758555592 @default.
- W3203313220 cites W2766739066 @default.
- W3203313220 cites W2769210209 @default.
- W3203313220 cites W2773003563 @default.
- W3203313220 cites W2782689936 @default.
- W3203313220 cites W2802981195 @default.
- W3203313220 cites W2904095439 @default.
- W3203313220 cites W2960803187 @default.
- W3203313220 cites W2963163009 @default.
- W3203313220 cites W2963446712 @default.
- W3203313220 cites W2964081807 @default.
- W3203313220 cites W2964298670 @default.
- W3203313220 cites W2980649243 @default.
- W3203313220 cites W2981769978 @default.
- W3203313220 cites W2987787344 @default.
- W3203313220 cites W2996724537 @default.
- W3203313220 cites W3036342633 @default.
- W3203313220 cites W3168778241 @default.
- W3203313220 cites W4245055982 @default.
- W3203313220 cites W2547433272 @default.
- W3203313220 doi "https://doi.org/10.1007/978-3-030-77939-9_12" @default.
- W3203313220 hasPublicationYear "2021" @default.
- W3203313220 type Work @default.
- W3203313220 sameAs 3203313220 @default.
- W3203313220 citedByCount "0" @default.
- W3203313220 crossrefType "book-chapter" @default.
- W3203313220 hasAuthorship W3203313220A5019526114 @default.
- W3203313220 hasAuthorship W3203313220A5039143993 @default.
- W3203313220 hasAuthorship W3203313220A5048698256 @default.
- W3203313220 hasAuthorship W3203313220A5057206446 @default.
- W3203313220 hasAuthorship W3203313220A5070612272 @default.
- W3203313220 hasAuthorship W3203313220A5071678720 @default.
- W3203313220 hasAuthorship W3203313220A5087382143 @default.
- W3203313220 hasConcept C116834253 @default.
- W3203313220 hasConcept C153180895 @default.
- W3203313220 hasConcept C154945302 @default.
- W3203313220 hasConcept C18903297 @default.
- W3203313220 hasConcept C31972630 @default.
- W3203313220 hasConcept C41008148 @default.
- W3203313220 hasConcept C86803240 @default.
- W3203313220 hasConcept C90856448 @default.
- W3203313220 hasConceptScore W3203313220C116834253 @default.
- W3203313220 hasConceptScore W3203313220C153180895 @default.
- W3203313220 hasConceptScore W3203313220C154945302 @default.
- W3203313220 hasConceptScore W3203313220C18903297 @default.
- W3203313220 hasConceptScore W3203313220C31972630 @default.
- W3203313220 hasConceptScore W3203313220C41008148 @default.
- W3203313220 hasConceptScore W3203313220C86803240 @default.
- W3203313220 hasConceptScore W3203313220C90856448 @default.
- W3203313220 hasLocation W32033132201 @default.
- W3203313220 hasOpenAccess W3203313220 @default.
- W3203313220 hasPrimaryLocation W32033132201 @default.
- W3203313220 hasRelatedWork W1891287906 @default.
- W3203313220 hasRelatedWork W1969923398 @default.
- W3203313220 hasRelatedWork W2036807459 @default.
- W3203313220 hasRelatedWork W2058170566 @default.
- W3203313220 hasRelatedWork W2170022336 @default.
- W3203313220 hasRelatedWork W2229312674 @default.
- W3203313220 hasRelatedWork W258625772 @default.
- W3203313220 hasRelatedWork W2755342338 @default.