Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203347338> ?p ?o ?g. }
- W3203347338 abstract "In large-scale wireless sensor networks (WSNs), the position information of individualsensors is very important for many applications. Generally, there are a small numberof position-aware nodes, referred to as the anchors. Every other node can estimate itsdistances to the surrounding anchors, and then employ trilateration or triangulation forself-localization. Such a system is easy to implement, and thus popular for both terrestrialand underwater applications, but it suffers from some major drawbacks. First, the densityof the anchors is generally very low due to economical considerations, leading to poorlocalization accuracy. Secondly, the energy and bandwidth consumptions of such systemsare quite significant. Last but not the least, the scalability of a network based on fixedanchors is not good. Therefore, whenever the network expands, more anchors should bedeployed to guarantee the required performance. Apart from these general challenges,both terrestrial and underwater networks have their own specific ones. For example, realtimechannel parameters are generally required for localization in terrestrial WSNs. Forunderwater networks, the clock skew between the target sensor and the anchors mustbe considered. That is to say, time synchronization should be performed together withlocalization, which makes the problem complicated.An alternative approach is to employ mobile anchors to replace the fixed ones. Forterrestrial networks, commercial drones and unmanned aerial vehicles (UAVs) are verygood choices, while autonomous underwater vehicles (AUVs) can be used for underwaterapplications. Mobile anchors can move along a predefined trajectory and broadcast beaconsignals. By listening to the messages, the other nodes in the network can localize themselvespassively. This architecture has three major advantages: first, energy and bandwidth consumptions can be significantly reduced; secondly, the localization accuracy can be muchimproved with the increased number of virtual anchors, which can be boosted at negligiblecost; thirdly, the coverage can be easily extended, which makes the solution and the networkhighly scalable.Motivated by this idea, this thesis investigates the mobile node-aided localization andtracking in large-scale WSNs. For both terrestrial and underwater WSNs, the systemdesign, modeling, and performance analyses will be presented for various applications,including: (1) the drone-assisted localization in terrestrial networks; (2) the ToA-basedunderwater localization and time synchronization; (3) the Doppler-based underwater localization;(4) the underwater target detection and tracking based on the convolutionalneural network and the fractional Fourier transform. In these applications, different challengeswill present, and we will see how these challenges can be addressed by replacingthe fixed anchors with mobile ones. Detailed mathematical models will be presented, andextensive simulation and experimental results will be provided to verify the theoreticalresults. Also, we will investigate the channel estimation for the fifth generation (5G) wirelesscommunications. A pilot decontamination method will be presented for the massivemultiple-input-multiple-output communications, and the data-aided channel tracking willbe discussed for millimeter wave communications. We will see that the localization problemis highly coupled with the channel estimation in wireless communications." @default.
- W3203347338 created "2021-10-11" @default.
- W3203347338 creator A5055137889 @default.
- W3203347338 date "2021-05-01" @default.
- W3203347338 modified "2023-09-25" @default.
- W3203347338 title "Mobile node-aided localization and tracking in terrestrial and underwater networks" @default.
- W3203347338 cites W1550212317 @default.
- W3203347338 cites W1558699874 @default.
- W3203347338 cites W1584244501 @default.
- W3203347338 cites W1686478837 @default.
- W3203347338 cites W1694723240 @default.
- W3203347338 cites W1907710130 @default.
- W3203347338 cites W1964718088 @default.
- W3203347338 cites W1965392255 @default.
- W3203347338 cites W1966356045 @default.
- W3203347338 cites W1971031702 @default.
- W3203347338 cites W1971443733 @default.
- W3203347338 cites W1980716523 @default.
- W3203347338 cites W1982494121 @default.
- W3203347338 cites W1989037773 @default.
- W3203347338 cites W1993348793 @default.
- W3203347338 cites W2008019282 @default.
- W3203347338 cites W2013546591 @default.
- W3203347338 cites W2013798816 @default.
- W3203347338 cites W2016999686 @default.
- W3203347338 cites W2030573223 @default.
- W3203347338 cites W2034651337 @default.
- W3203347338 cites W2036814222 @default.
- W3203347338 cites W2037934851 @default.
- W3203347338 cites W2038023485 @default.
- W3203347338 cites W2038743452 @default.
- W3203347338 cites W2038946940 @default.
- W3203347338 cites W2039198074 @default.
- W3203347338 cites W2045840914 @default.
- W3203347338 cites W2046220682 @default.
- W3203347338 cites W2049193413 @default.
- W3203347338 cites W2049611026 @default.
- W3203347338 cites W2050409719 @default.
- W3203347338 cites W2052823331 @default.
- W3203347338 cites W2055183517 @default.
- W3203347338 cites W2055849441 @default.
- W3203347338 cites W2064116064 @default.
- W3203347338 cites W2067605736 @default.
- W3203347338 cites W2067643757 @default.
- W3203347338 cites W2069844710 @default.
- W3203347338 cites W2075148031 @default.
- W3203347338 cites W2076314006 @default.
- W3203347338 cites W2078220650 @default.
- W3203347338 cites W2084304524 @default.
- W3203347338 cites W2106457743 @default.
- W3203347338 cites W2108710836 @default.
- W3203347338 cites W2110063971 @default.
- W3203347338 cites W2111113050 @default.
- W3203347338 cites W2114945762 @default.
- W3203347338 cites W2116334496 @default.
- W3203347338 cites W2119609463 @default.
- W3203347338 cites W2120558974 @default.
- W3203347338 cites W2120677002 @default.
- W3203347338 cites W2121315337 @default.
- W3203347338 cites W2124178852 @default.
- W3203347338 cites W2128912656 @default.
- W3203347338 cites W2131665779 @default.
- W3203347338 cites W2133003999 @default.
- W3203347338 cites W2133353795 @default.
- W3203347338 cites W2133835265 @default.
- W3203347338 cites W2134746901 @default.
- W3203347338 cites W2136450173 @default.
- W3203347338 cites W2136644341 @default.
- W3203347338 cites W2139212485 @default.
- W3203347338 cites W2140077459 @default.
- W3203347338 cites W2140855769 @default.
- W3203347338 cites W2141682101 @default.
- W3203347338 cites W2143082970 @default.
- W3203347338 cites W2145013959 @default.
- W3203347338 cites W2146029784 @default.
- W3203347338 cites W2146661052 @default.
- W3203347338 cites W2147035723 @default.
- W3203347338 cites W2147601077 @default.
- W3203347338 cites W2148036654 @default.
- W3203347338 cites W2155671414 @default.
- W3203347338 cites W2156343734 @default.
- W3203347338 cites W2156668452 @default.
- W3203347338 cites W2157323191 @default.
- W3203347338 cites W2163513242 @default.
- W3203347338 cites W2170984917 @default.
- W3203347338 cites W2171342189 @default.
- W3203347338 cites W2171387626 @default.
- W3203347338 cites W2183663270 @default.
- W3203347338 cites W2195693430 @default.
- W3203347338 cites W2237176355 @default.
- W3203347338 cites W2240613635 @default.
- W3203347338 cites W2268179553 @default.
- W3203347338 cites W2280812320 @default.
- W3203347338 cites W2285553406 @default.
- W3203347338 cites W2288352636 @default.
- W3203347338 cites W2294344867 @default.
- W3203347338 cites W2343491855 @default.
- W3203347338 cites W2345019601 @default.
- W3203347338 cites W2345534369 @default.
- W3203347338 cites W2471305137 @default.