Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203349140> ?p ?o ?g. }
- W3203349140 abstract "Variational quantum algorithms (VQAs) are increasingly being applied in simulations of strongly bound (covalently bonded) systems using full molecular orbital basis representations. The application of quantum computers to the weakly bound intermolecular and noncovalently bonded regime, however, has remained largely unexplored. In this work, we develop a coarse-grained representation of the electronic response that is ideally suited for determining the ground state of weakly interacting molecules using a VQA. We require qubit numbers that grow linearly with the number of molecules and derive scaling behavior for the number of circuits and measurements required, which compare favorably to traditional variational quantum eigensolver methods. We demonstrate our method on IBM superconducting quantum processors and show its capability to resolve the dispersion energy as a function of separation for a pair of nonpolar molecules---thereby establishing a means by which quantum computers can model Van der Waals interactions directly from zero-point quantum fluctuations. Within this coarse-grained approximation, we conclude that current-generation quantum hardware is capable of probing energies in this weakly bound but nevertheless chemically ubiquitous and biologically important regime. Finally, we perform experiments on simulated and real quantum computers for systems of three, four, and five oscillators as well as oscillators with anharmonic onsite binding potentials; the consequences of the latter are unexamined in large systems using classical computational methods but can be incorporated here with low computational overhead." @default.
- W3203349140 created "2021-10-11" @default.
- W3203349140 creator A5001223912 @default.
- W3203349140 creator A5002402834 @default.
- W3203349140 creator A5017546223 @default.
- W3203349140 creator A5037363407 @default.
- W3203349140 creator A5061103540 @default.
- W3203349140 creator A5085275545 @default.
- W3203349140 date "2022-06-06" @default.
- W3203349140 modified "2023-10-15" @default.
- W3203349140 title "Coarse-grained intermolecular interactions on quantum processors" @default.
- W3203349140 cites W1498453928 @default.
- W3203349140 cites W1516706059 @default.
- W3203349140 cites W1863908278 @default.
- W3203349140 cites W1918992572 @default.
- W3203349140 cites W196871588 @default.
- W3203349140 cites W1981049088 @default.
- W3203349140 cites W1984101070 @default.
- W3203349140 cites W1991123779 @default.
- W3203349140 cites W1993242822 @default.
- W3203349140 cites W2003656163 @default.
- W3203349140 cites W2010785223 @default.
- W3203349140 cites W2035454388 @default.
- W3203349140 cites W2040854175 @default.
- W3203349140 cites W2049385139 @default.
- W3203349140 cites W2051928607 @default.
- W3203349140 cites W2055939670 @default.
- W3203349140 cites W2056972913 @default.
- W3203349140 cites W2059885388 @default.
- W3203349140 cites W2060491737 @default.
- W3203349140 cites W2090236590 @default.
- W3203349140 cites W2098614082 @default.
- W3203349140 cites W2108372432 @default.
- W3203349140 cites W2109128643 @default.
- W3203349140 cites W2109931506 @default.
- W3203349140 cites W2133431683 @default.
- W3203349140 cites W2145161566 @default.
- W3203349140 cites W2145454068 @default.
- W3203349140 cites W2151752974 @default.
- W3203349140 cites W2161685427 @default.
- W3203349140 cites W2167872912 @default.
- W3203349140 cites W2176839111 @default.
- W3203349140 cites W2254754114 @default.
- W3203349140 cites W2321114941 @default.
- W3203349140 cites W2329118757 @default.
- W3203349140 cites W2517136752 @default.
- W3203349140 cites W2562526363 @default.
- W3203349140 cites W2594341860 @default.
- W3203349140 cites W2755088361 @default.
- W3203349140 cites W2755255888 @default.
- W3203349140 cites W2770193717 @default.
- W3203349140 cites W2781738013 @default.
- W3203349140 cites W2784059933 @default.
- W3203349140 cites W2790388700 @default.
- W3203349140 cites W2794444783 @default.
- W3203349140 cites W2804172638 @default.
- W3203349140 cites W2806481925 @default.
- W3203349140 cites W2889126882 @default.
- W3203349140 cites W2908516499 @default.
- W3203349140 cites W2941172330 @default.
- W3203349140 cites W2944385778 @default.
- W3203349140 cites W2950786808 @default.
- W3203349140 cites W2954292307 @default.
- W3203349140 cites W2954369586 @default.
- W3203349140 cites W2963198496 @default.
- W3203349140 cites W2963239445 @default.
- W3203349140 cites W2969454111 @default.
- W3203349140 cites W2969579194 @default.
- W3203349140 cites W2989573127 @default.
- W3203349140 cites W3006610287 @default.
- W3203349140 cites W3011472404 @default.
- W3203349140 cites W3013067859 @default.
- W3203349140 cites W3014386333 @default.
- W3203349140 cites W3018348740 @default.
- W3203349140 cites W3091808578 @default.
- W3203349140 cites W3092470460 @default.
- W3203349140 cites W3096987870 @default.
- W3203349140 cites W3099785372 @default.
- W3203349140 cites W3102026853 @default.
- W3203349140 cites W3102177746 @default.
- W3203349140 cites W3103438630 @default.
- W3203349140 cites W3103872322 @default.
- W3203349140 cites W3104022488 @default.
- W3203349140 cites W3105513513 @default.
- W3203349140 cites W3106718099 @default.
- W3203349140 cites W3112014248 @default.
- W3203349140 cites W3113541475 @default.
- W3203349140 cites W3131450627 @default.
- W3203349140 cites W3136233239 @default.
- W3203349140 cites W3148001159 @default.
- W3203349140 cites W3165717557 @default.
- W3203349140 cites W3174352874 @default.
- W3203349140 cites W3183968998 @default.
- W3203349140 cites W3189250281 @default.
- W3203349140 cites W3199543116 @default.
- W3203349140 cites W3207697613 @default.
- W3203349140 cites W3209107739 @default.
- W3203349140 cites W4233121052 @default.
- W3203349140 doi "https://doi.org/10.1103/physreva.105.062409" @default.
- W3203349140 hasPublicationYear "2022" @default.