Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203349440> ?p ?o ?g. }
- W3203349440 endingPage "54" @default.
- W3203349440 startingPage "37" @default.
- W3203349440 abstract "The scale and magnitude of the current SARS-CoV2 or COVID-19 pandemic caused enormous burden to healthcare in addition to the socioeconomics of people and countries. The diagnosis is a key part of the strategies to prevent further spread of the infection and patient treatment. The viral infection can be detected by RT-PCR or by antibody testing for specific IgM. The chest X-ray and CT scan often diagnose the COVID-19 earlier than the laboratory tests. However, when radiologists are overburdened with too many cases it is very difficult to review them accurately and timely. The artificial intelligence (AI) based tools can assist at this step with faster detection of abnormality with comparable accuracy. The AI using neural-network-based models can distinguish COVID-19 from other pneumonia, based on the presence of ground glass opacity (GGO) and other features in X-ray and CT scan images. In addition to the interpretation of the radiological data, AI technology can also help with the optimization of data acquisition, preprocessing of initial slices, restructuring of a 3D image, and augmentation. Combining radiological information with the clinical symptoms and other vital measurements can increase the speed and accuracy of COVID-19 diagnosis. Based on the success of AI tools, we predict that the AI-based diagnostic will soon come bundled with the X-ray and CT operating software. In addition to radiology, the AI can be applied to other related data types from simple PCR data to complex high-dimensional cytometry data for automation and extraction of relevant information." @default.
- W3203349440 created "2021-10-11" @default.
- W3203349440 creator A5005116678 @default.
- W3203349440 creator A5023153184 @default.
- W3203349440 creator A5026679953 @default.
- W3203349440 date "2021-01-01" @default.
- W3203349440 modified "2023-10-18" @default.
- W3203349440 title "Artificial Intelligence-Mediated Medical Diagnosis of COVID-19" @default.
- W3203349440 cites W1507160177 @default.
- W3203349440 cites W1811783050 @default.
- W3203349440 cites W1971214320 @default.
- W3203349440 cites W2000040025 @default.
- W3203349440 cites W2004837257 @default.
- W3203349440 cites W2009782062 @default.
- W3203349440 cites W2021943078 @default.
- W3203349440 cites W2028300697 @default.
- W3203349440 cites W2032220748 @default.
- W3203349440 cites W2083698510 @default.
- W3203349440 cites W2097188280 @default.
- W3203349440 cites W2151795182 @default.
- W3203349440 cites W2151920397 @default.
- W3203349440 cites W2306812407 @default.
- W3203349440 cites W2584651994 @default.
- W3203349440 cites W2614636468 @default.
- W3203349440 cites W2622731880 @default.
- W3203349440 cites W2710205933 @default.
- W3203349440 cites W2776146695 @default.
- W3203349440 cites W2803760365 @default.
- W3203349440 cites W2909840165 @default.
- W3203349440 cites W2926586252 @default.
- W3203349440 cites W2981722359 @default.
- W3203349440 cites W3002108456 @default.
- W3203349440 cites W3004280078 @default.
- W3203349440 cites W3006082171 @default.
- W3203349440 cites W3006643024 @default.
- W3203349440 cites W3006882119 @default.
- W3203349440 cites W3007273493 @default.
- W3203349440 cites W3007455870 @default.
- W3203349440 cites W3007497549 @default.
- W3203349440 cites W3007814559 @default.
- W3203349440 cites W3008420046 @default.
- W3203349440 cites W3009834387 @default.
- W3203349440 cites W3010233963 @default.
- W3203349440 cites W3010931892 @default.
- W3203349440 cites W3011149445 @default.
- W3203349440 cites W3011483298 @default.
- W3203349440 cites W3011863580 @default.
- W3203349440 cites W3012772854 @default.
- W3203349440 cites W3012948061 @default.
- W3203349440 cites W3013402035 @default.
- W3203349440 cites W3013601031 @default.
- W3203349440 cites W3014080169 @default.
- W3203349440 cites W3014586511 @default.
- W3203349440 cites W3014846055 @default.
- W3203349440 cites W3014993555 @default.
- W3203349440 cites W3015321334 @default.
- W3203349440 cites W3016538467 @default.
- W3203349440 cites W3017680297 @default.
- W3203349440 cites W3019625944 @default.
- W3203349440 cites W3021234865 @default.
- W3203349440 cites W3022085046 @default.
- W3203349440 cites W3024079853 @default.
- W3203349440 cites W3025948831 @default.
- W3203349440 cites W3028615142 @default.
- W3203349440 cites W3028675085 @default.
- W3203349440 cites W3028711203 @default.
- W3203349440 cites W3031410640 @default.
- W3203349440 cites W3035062851 @default.
- W3203349440 cites W3038262376 @default.
- W3203349440 cites W3038505425 @default.
- W3203349440 cites W3039624693 @default.
- W3203349440 cites W3043425224 @default.
- W3203349440 cites W3047903189 @default.
- W3203349440 cites W3089054225 @default.
- W3203349440 cites W3104810384 @default.
- W3203349440 cites W3165656738 @default.
- W3203349440 doi "https://doi.org/10.1007/978-981-15-7317-0_3" @default.
- W3203349440 hasPublicationYear "2021" @default.
- W3203349440 type Work @default.
- W3203349440 sameAs 3203349440 @default.
- W3203349440 citedByCount "0" @default.
- W3203349440 crossrefType "book-chapter" @default.
- W3203349440 hasAuthorship W3203349440A5005116678 @default.
- W3203349440 hasAuthorship W3203349440A5023153184 @default.
- W3203349440 hasAuthorship W3203349440A5026679953 @default.
- W3203349440 hasConcept C119857082 @default.
- W3203349440 hasConcept C126838900 @default.
- W3203349440 hasConcept C142724271 @default.
- W3203349440 hasConcept C153180895 @default.
- W3203349440 hasConcept C154945302 @default.
- W3203349440 hasConcept C190892606 @default.
- W3203349440 hasConcept C19527891 @default.
- W3203349440 hasConcept C2779134260 @default.
- W3203349440 hasConcept C3008058167 @default.
- W3203349440 hasConcept C31601959 @default.
- W3203349440 hasConcept C34736171 @default.
- W3203349440 hasConcept C41008148 @default.
- W3203349440 hasConcept C524204448 @default.