Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203358497> ?p ?o ?g. }
- W3203358497 endingPage "3413" @default.
- W3203358497 startingPage "3399" @default.
- W3203358497 abstract "In recent years, the infrastructure of Wireless Internet of Sensor Networks (WIoSNs) has been more complicated owing to developments in the internet and devices’ connectivity. To effectively prepare, control, hold and optimize wireless sensor networks, a better assessment needs to be conducted. The field of artificial intelligence has made a great deal of progress with deep learning systems and these techniques have been used for data analysis. This study investigates the methodology of Real Time Sequential Deep Extreme Learning Machine (RTS-DELM) implemented to wireless Internet of Things (IoT) enabled sensor networks for the detection of any intrusion activity. Data fusion is a well-known methodology that can be beneficial for the improvement of data accuracy, as well as for the maximizing of wireless sensor networks lifespan. We also suggested an approach that not only makes the casting of parallel data fusion network but also render their computations more effective. By using the Real Time Sequential Deep Extreme Learning Machine (RTS-DELM) methodology, an excessive degree of reliability with a minimal error rate of any intrusion activity in wireless sensor networks is accomplished. Simulation results show that wireless sensor networks are optimized effectively to monitor and detect any malicious or intrusion activity through this proposed approach. Eventually, threats and a more general outlook are explored." @default.
- W3203358497 created "2021-10-11" @default.
- W3203358497 creator A5003118033 @default.
- W3203358497 creator A5010118747 @default.
- W3203358497 creator A5037528486 @default.
- W3203358497 creator A5067373420 @default.
- W3203358497 date "2022-01-01" @default.
- W3203358497 modified "2023-09-26" @default.
- W3203358497 title "Data Fusion-Based Machine Learning Architecture for Intrusion Detection" @default.
- W3203358497 cites W1526373655 @default.
- W3203358497 cites W1542017541 @default.
- W3203358497 cites W1968773071 @default.
- W3203358497 cites W1969085745 @default.
- W3203358497 cites W1982459270 @default.
- W3203358497 cites W1993717606 @default.
- W3203358497 cites W1994164663 @default.
- W3203358497 cites W2031794885 @default.
- W3203358497 cites W2056165216 @default.
- W3203358497 cites W2057124436 @default.
- W3203358497 cites W2065424480 @default.
- W3203358497 cites W2079421249 @default.
- W3203358497 cites W2091005538 @default.
- W3203358497 cites W2097751785 @default.
- W3203358497 cites W2148750096 @default.
- W3203358497 cites W2154036212 @default.
- W3203358497 cites W2276629685 @default.
- W3203358497 cites W2278186031 @default.
- W3203358497 cites W2295793598 @default.
- W3203358497 cites W2342408547 @default.
- W3203358497 cites W2414830503 @default.
- W3203358497 cites W2514791705 @default.
- W3203358497 cites W2580566736 @default.
- W3203358497 cites W2593491400 @default.
- W3203358497 cites W2617931713 @default.
- W3203358497 cites W2735793369 @default.
- W3203358497 cites W2759910885 @default.
- W3203358497 cites W2897706133 @default.
- W3203358497 cites W2962915224 @default.
- W3203358497 cites W2963557522 @default.
- W3203358497 cites W2980236791 @default.
- W3203358497 cites W2999867301 @default.
- W3203358497 cites W3004919087 @default.
- W3203358497 cites W3007556402 @default.
- W3203358497 cites W3007939291 @default.
- W3203358497 cites W3100857292 @default.
- W3203358497 cites W3112404004 @default.
- W3203358497 cites W3126135128 @default.
- W3203358497 doi "https://doi.org/10.32604/cmc.2022.020173" @default.
- W3203358497 hasPublicationYear "2022" @default.
- W3203358497 type Work @default.
- W3203358497 sameAs 3203358497 @default.
- W3203358497 citedByCount "27" @default.
- W3203358497 countsByYear W32033584972021 @default.
- W3203358497 countsByYear W32033584972022 @default.
- W3203358497 countsByYear W32033584972023 @default.
- W3203358497 crossrefType "journal-article" @default.
- W3203358497 hasAuthorship W3203358497A5003118033 @default.
- W3203358497 hasAuthorship W3203358497A5010118747 @default.
- W3203358497 hasAuthorship W3203358497A5037528486 @default.
- W3203358497 hasAuthorship W3203358497A5067373420 @default.
- W3203358497 hasBestOaLocation W32033584971 @default.
- W3203358497 hasConcept C108037233 @default.
- W3203358497 hasConcept C108583219 @default.
- W3203358497 hasConcept C110875604 @default.
- W3203358497 hasConcept C119857082 @default.
- W3203358497 hasConcept C121332964 @default.
- W3203358497 hasConcept C136764020 @default.
- W3203358497 hasConcept C154945302 @default.
- W3203358497 hasConcept C163258240 @default.
- W3203358497 hasConcept C202444582 @default.
- W3203358497 hasConcept C24590314 @default.
- W3203358497 hasConcept C2780150128 @default.
- W3203358497 hasConcept C31258907 @default.
- W3203358497 hasConcept C33923547 @default.
- W3203358497 hasConcept C33954974 @default.
- W3203358497 hasConcept C35525427 @default.
- W3203358497 hasConcept C41008148 @default.
- W3203358497 hasConcept C41971633 @default.
- W3203358497 hasConcept C43214815 @default.
- W3203358497 hasConcept C50644808 @default.
- W3203358497 hasConcept C555944384 @default.
- W3203358497 hasConcept C62520636 @default.
- W3203358497 hasConcept C76155785 @default.
- W3203358497 hasConcept C79403827 @default.
- W3203358497 hasConcept C9652623 @default.
- W3203358497 hasConceptScore W3203358497C108037233 @default.
- W3203358497 hasConceptScore W3203358497C108583219 @default.
- W3203358497 hasConceptScore W3203358497C110875604 @default.
- W3203358497 hasConceptScore W3203358497C119857082 @default.
- W3203358497 hasConceptScore W3203358497C121332964 @default.
- W3203358497 hasConceptScore W3203358497C136764020 @default.
- W3203358497 hasConceptScore W3203358497C154945302 @default.
- W3203358497 hasConceptScore W3203358497C163258240 @default.
- W3203358497 hasConceptScore W3203358497C202444582 @default.
- W3203358497 hasConceptScore W3203358497C24590314 @default.
- W3203358497 hasConceptScore W3203358497C2780150128 @default.
- W3203358497 hasConceptScore W3203358497C31258907 @default.
- W3203358497 hasConceptScore W3203358497C33923547 @default.