Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203366716> ?p ?o ?g. }
- W3203366716 endingPage "107562" @default.
- W3203366716 startingPage "107562" @default.
- W3203366716 abstract "With increasingly massive amounts of high-resolution images of Mars, automated detection of geological landforms on Mars has received widespread interest. It is significant for acquiring knowledge of distant planetary surfaces and processes, or manifold onboard applications such as spacecraft motion estimation and obstacle avoidance. This is a challenging task, not only because of the multiple sizes of targets and complex image backgrounds, but also the various orientations of some bar-shaped landforms in satellite images captured from the top view. The existing methods for directed landform detection require several pre or post-processing operations to extract possible regions of interest and final detection results with orientation, which are very time consuming. In this paper, a new end-to-end deep learning framework is developed for detecting arbitrarily-directed landforms. This framework, named Rotated-SSD (Single Shot MultiBox Detector, SSD), can locate and identify different landforms on Mars in one pass, by using rotatable anchor-box based mechanism. To enhance its robustness against angle variation of the targets and complex backgrounds, a new efficient match strategy is proposed for anchoring default boxes to ground truth boxes in the model training process and an autoencoder-based unsupervised pre-training operation is introduced to improve both the model training and inference performance. The proposed framework is tested for detection of bar-shaped buttes and dark slope streaks on satellite images. The detection results show that our framework can significantly contribute to onboard motion estimation systems. The comparative results demonstrate that the proposed match strategy outperforms other state-of-the-art match strategies with regard to model training efficiency and prediction accuracy. The pre-training strategy can facilitate the training of deep architectures in case of limited available training data." @default.
- W3203366716 created "2021-10-11" @default.
- W3203366716 creator A5003655552 @default.
- W3203366716 creator A5016896366 @default.
- W3203366716 creator A5021323627 @default.
- W3203366716 creator A5028502367 @default.
- W3203366716 creator A5033621287 @default.
- W3203366716 creator A5050451535 @default.
- W3203366716 creator A5073221740 @default.
- W3203366716 date "2021-12-01" @default.
- W3203366716 modified "2023-10-06" @default.
- W3203366716 title "A robust end-to-end deep learning framework for detecting Martian landforms with arbitrary orientations" @default.
- W3203366716 cites W1536680647 @default.
- W3203366716 cites W1975036118 @default.
- W3203366716 cites W1977024169 @default.
- W3203366716 cites W2031489346 @default.
- W3203366716 cites W2060300295 @default.
- W3203366716 cites W2062229365 @default.
- W3203366716 cites W2097117768 @default.
- W3203366716 cites W2100270609 @default.
- W3203366716 cites W2102605133 @default.
- W3203366716 cites W2115579991 @default.
- W3203366716 cites W2117539524 @default.
- W3203366716 cites W2253429366 @default.
- W3203366716 cites W2281356788 @default.
- W3203366716 cites W2294211171 @default.
- W3203366716 cites W2316981074 @default.
- W3203366716 cites W2412588858 @default.
- W3203366716 cites W2576938664 @default.
- W3203366716 cites W2598799153 @default.
- W3203366716 cites W2608045258 @default.
- W3203366716 cites W2724686236 @default.
- W3203366716 cites W2767566874 @default.
- W3203366716 cites W2768931328 @default.
- W3203366716 cites W2782934949 @default.
- W3203366716 cites W2791349345 @default.
- W3203366716 cites W2792403456 @default.
- W3203366716 cites W2887362407 @default.
- W3203366716 cites W2887850625 @default.
- W3203366716 cites W2889346359 @default.
- W3203366716 cites W2892094232 @default.
- W3203366716 cites W2897003796 @default.
- W3203366716 cites W2897088575 @default.
- W3203366716 cites W2919115771 @default.
- W3203366716 cites W2963037989 @default.
- W3203366716 cites W2963951674 @default.
- W3203366716 cites W3016755998 @default.
- W3203366716 doi "https://doi.org/10.1016/j.knosys.2021.107562" @default.
- W3203366716 hasPublicationYear "2021" @default.
- W3203366716 type Work @default.
- W3203366716 sameAs 3203366716 @default.
- W3203366716 citedByCount "1" @default.
- W3203366716 countsByYear W32033667162022 @default.
- W3203366716 crossrefType "journal-article" @default.
- W3203366716 hasAuthorship W3203366716A5003655552 @default.
- W3203366716 hasAuthorship W3203366716A5016896366 @default.
- W3203366716 hasAuthorship W3203366716A5021323627 @default.
- W3203366716 hasAuthorship W3203366716A5028502367 @default.
- W3203366716 hasAuthorship W3203366716A5033621287 @default.
- W3203366716 hasAuthorship W3203366716A5050451535 @default.
- W3203366716 hasAuthorship W3203366716A5073221740 @default.
- W3203366716 hasConcept C104317684 @default.
- W3203366716 hasConcept C108497213 @default.
- W3203366716 hasConcept C108583219 @default.
- W3203366716 hasConcept C121332964 @default.
- W3203366716 hasConcept C127313418 @default.
- W3203366716 hasConcept C1276947 @default.
- W3203366716 hasConcept C151730666 @default.
- W3203366716 hasConcept C154945302 @default.
- W3203366716 hasConcept C185592680 @default.
- W3203366716 hasConcept C31972630 @default.
- W3203366716 hasConcept C41008148 @default.
- W3203366716 hasConcept C55493867 @default.
- W3203366716 hasConcept C62649853 @default.
- W3203366716 hasConcept C63479239 @default.
- W3203366716 hasConcept C68702407 @default.
- W3203366716 hasConcept C83260615 @default.
- W3203366716 hasConceptScore W3203366716C104317684 @default.
- W3203366716 hasConceptScore W3203366716C108497213 @default.
- W3203366716 hasConceptScore W3203366716C108583219 @default.
- W3203366716 hasConceptScore W3203366716C121332964 @default.
- W3203366716 hasConceptScore W3203366716C127313418 @default.
- W3203366716 hasConceptScore W3203366716C1276947 @default.
- W3203366716 hasConceptScore W3203366716C151730666 @default.
- W3203366716 hasConceptScore W3203366716C154945302 @default.
- W3203366716 hasConceptScore W3203366716C185592680 @default.
- W3203366716 hasConceptScore W3203366716C31972630 @default.
- W3203366716 hasConceptScore W3203366716C41008148 @default.
- W3203366716 hasConceptScore W3203366716C55493867 @default.
- W3203366716 hasConceptScore W3203366716C62649853 @default.
- W3203366716 hasConceptScore W3203366716C63479239 @default.
- W3203366716 hasConceptScore W3203366716C68702407 @default.
- W3203366716 hasConceptScore W3203366716C83260615 @default.
- W3203366716 hasFunder F4320321001 @default.
- W3203366716 hasFunder F4320335777 @default.
- W3203366716 hasFunder F4320335787 @default.
- W3203366716 hasLocation W32033667161 @default.
- W3203366716 hasOpenAccess W3203366716 @default.