Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203399571> ?p ?o ?g. }
- W3203399571 endingPage "104949" @default.
- W3203399571 startingPage "104949" @default.
- W3203399571 abstract "Mineral chemistry analysis is a valuable tool with many applications in mineralogy and mineral prospecting and beneficiation studies. This type of analysis can point out relevant information, such as the concentration of the chemical element of interest in the analyzed phase and, thus, the predisposition of an area for a given commodity. Therefore, considerable amounts of data have been generated, especially with the use of electron probe microanalyzers (EPMA), either for academic research or for prospecting and applied mineralogical work in the mineral industry. We have identified an efficiency gap when manually processing and analyzing mineral chemistry data, and thus, investigated the possibility that such research might benefit from the versatility of machine learning algorithms. We present Qmin, an application that assists in increasing the efficiency of processing and analysis of mineral chemistry data through automated routines. Our code benefits from a hierarchical structure of classifiers and regressors trained by a Random Forests algorithm developed on a filtered training database extracted from the GEOROC (Geochemistry of Rocks of the Oceans and Continents) repository, which is maintained by the Max Planck Institute for Chemistry. To test the robustness of our application, we applied a blind test with more than 22,000 mineral chemistry analyses compiled for diamond prospecting within the scope of the Diamante Brasil Project of the Geological Survey of Brazil. The blind test yielded a balanced classifier accuracy of ∼99% for the minerals known by Qmin. This outcome emphasizes the potential of machine learning techniques in assisting the processing and analysis of mineral chemistry data." @default.
- W3203399571 created "2021-10-11" @default.
- W3203399571 creator A5009948612 @default.
- W3203399571 creator A5043658157 @default.
- W3203399571 creator A5059908276 @default.
- W3203399571 creator A5062266519 @default.
- W3203399571 creator A5074578565 @default.
- W3203399571 creator A5076311713 @default.
- W3203399571 date "2021-12-01" @default.
- W3203399571 modified "2023-10-12" @default.
- W3203399571 title "Qmin – A machine learning-based application for processing and analysis of mineral chemistry data" @default.
- W3203399571 cites W1565234293 @default.
- W3203399571 cites W1941659294 @default.
- W3203399571 cites W1973595880 @default.
- W3203399571 cites W1983865151 @default.
- W3203399571 cites W1988613889 @default.
- W3203399571 cites W2068567332 @default.
- W3203399571 cites W2084488110 @default.
- W3203399571 cites W2090825156 @default.
- W3203399571 cites W2148143831 @default.
- W3203399571 cites W2606355498 @default.
- W3203399571 cites W2788936431 @default.
- W3203399571 cites W2794333831 @default.
- W3203399571 cites W2911964244 @default.
- W3203399571 cites W2922840835 @default.
- W3203399571 cites W2923327556 @default.
- W3203399571 cites W2940433316 @default.
- W3203399571 cites W2968982954 @default.
- W3203399571 cites W2993383518 @default.
- W3203399571 cites W3033765727 @default.
- W3203399571 cites W3048197185 @default.
- W3203399571 cites W3091873932 @default.
- W3203399571 cites W3107569396 @default.
- W3203399571 cites W3118876621 @default.
- W3203399571 cites W3124465846 @default.
- W3203399571 cites W342324839 @default.
- W3203399571 cites W866664596 @default.
- W3203399571 doi "https://doi.org/10.1016/j.cageo.2021.104949" @default.
- W3203399571 hasPublicationYear "2021" @default.
- W3203399571 type Work @default.
- W3203399571 sameAs 3203399571 @default.
- W3203399571 citedByCount "2" @default.
- W3203399571 countsByYear W32033995712022 @default.
- W3203399571 crossrefType "journal-article" @default.
- W3203399571 hasAuthorship W3203399571A5009948612 @default.
- W3203399571 hasAuthorship W3203399571A5043658157 @default.
- W3203399571 hasAuthorship W3203399571A5059908276 @default.
- W3203399571 hasAuthorship W3203399571A5062266519 @default.
- W3203399571 hasAuthorship W3203399571A5074578565 @default.
- W3203399571 hasAuthorship W3203399571A5076311713 @default.
- W3203399571 hasConcept C11413529 @default.
- W3203399571 hasConcept C119857082 @default.
- W3203399571 hasConcept C124101348 @default.
- W3203399571 hasConcept C125171110 @default.
- W3203399571 hasConcept C127313418 @default.
- W3203399571 hasConcept C138827492 @default.
- W3203399571 hasConcept C147789679 @default.
- W3203399571 hasConcept C154945302 @default.
- W3203399571 hasConcept C16674752 @default.
- W3203399571 hasConcept C175181221 @default.
- W3203399571 hasConcept C185592680 @default.
- W3203399571 hasConcept C187320778 @default.
- W3203399571 hasConcept C199289684 @default.
- W3203399571 hasConcept C25115569 @default.
- W3203399571 hasConcept C2776867696 @default.
- W3203399571 hasConcept C33556824 @default.
- W3203399571 hasConcept C41008148 @default.
- W3203399571 hasConcept C77088390 @default.
- W3203399571 hasConceptScore W3203399571C11413529 @default.
- W3203399571 hasConceptScore W3203399571C119857082 @default.
- W3203399571 hasConceptScore W3203399571C124101348 @default.
- W3203399571 hasConceptScore W3203399571C125171110 @default.
- W3203399571 hasConceptScore W3203399571C127313418 @default.
- W3203399571 hasConceptScore W3203399571C138827492 @default.
- W3203399571 hasConceptScore W3203399571C147789679 @default.
- W3203399571 hasConceptScore W3203399571C154945302 @default.
- W3203399571 hasConceptScore W3203399571C16674752 @default.
- W3203399571 hasConceptScore W3203399571C175181221 @default.
- W3203399571 hasConceptScore W3203399571C185592680 @default.
- W3203399571 hasConceptScore W3203399571C187320778 @default.
- W3203399571 hasConceptScore W3203399571C199289684 @default.
- W3203399571 hasConceptScore W3203399571C25115569 @default.
- W3203399571 hasConceptScore W3203399571C2776867696 @default.
- W3203399571 hasConceptScore W3203399571C33556824 @default.
- W3203399571 hasConceptScore W3203399571C41008148 @default.
- W3203399571 hasConceptScore W3203399571C77088390 @default.
- W3203399571 hasLocation W32033995711 @default.
- W3203399571 hasOpenAccess W3203399571 @default.
- W3203399571 hasPrimaryLocation W32033995711 @default.
- W3203399571 hasRelatedWork W1990924339 @default.
- W3203399571 hasRelatedWork W2155422166 @default.
- W3203399571 hasRelatedWork W2350325605 @default.
- W3203399571 hasRelatedWork W2356366914 @default.
- W3203399571 hasRelatedWork W2748952813 @default.
- W3203399571 hasRelatedWork W2899084033 @default.
- W3203399571 hasRelatedWork W2961085424 @default.
- W3203399571 hasRelatedWork W3127637408 @default.
- W3203399571 hasRelatedWork W3203399571 @default.