Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203452009> ?p ?o ?g. }
- W3203452009 endingPage "107" @default.
- W3203452009 startingPage "99" @default.
- W3203452009 abstract "Among the different available methods for synthetic CT generation from MR images for the task of MR-guided radiation planning, the deep learning algorithms have and do outperform their conventional counterparts. In this study, we investigated the performance of some most popular deep learning architectures including eCNN, U-Net, GAN, V-Net, and Res-Net for the task of sCT generation. As a baseline, an atlas-based method is implemented to which the results of the deep learning-based model are compared.A dataset consisting of 20 co-registered MR-CT pairs of the male pelvis is applied to assess the different sCT production methods' performance. The mean error (ME), mean absolute error (MAE), Pearson correlation coefficient (PCC), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) metrics were computed between the estimated sCT and the ground truth (reference) CT images.The visual inspection revealed that the sCTs produced by eCNN, V-Net, and ResNet, unlike the other methods, were less noisy and greatly resemble the ground truth CT image. In the whole pelvis region, the eCNN yielded the lowest MAE (26.03 ± 8.85 HU) and ME (0.82 ± 7.06 HU), and the highest PCC metrics were yielded by the eCNN (0.93 ± 0.05) and ResNet (0.91 ± 0.02) methods. The ResNet model had the highest PSNR of 29.38 ± 1.75 among all models. In terms of the Dice similarity coefficient, the eCNN method revealed superior performance in major tissue identification (air, bone, and soft tissue).All in all, the eCNN and ResNet deep learning methods revealed acceptable performance with clinically tolerable quantification errors." @default.
- W3203452009 created "2021-10-11" @default.
- W3203452009 creator A5034361552 @default.
- W3203452009 creator A5038089832 @default.
- W3203452009 creator A5039181443 @default.
- W3203452009 date "2021-10-01" @default.
- W3203452009 modified "2023-10-16" @default.
- W3203452009 title "Comparison of different deep learning architectures for synthetic CT generation from MR images" @default.
- W3203452009 cites W2015134308 @default.
- W3203452009 cites W2044967973 @default.
- W3203452009 cites W2103271749 @default.
- W3203452009 cites W2117340355 @default.
- W3203452009 cites W2133287637 @default.
- W3203452009 cites W2140866726 @default.
- W3203452009 cites W2267700533 @default.
- W3203452009 cites W2271152362 @default.
- W3203452009 cites W2276599903 @default.
- W3203452009 cites W2418786089 @default.
- W3203452009 cites W2513595145 @default.
- W3203452009 cites W2529499313 @default.
- W3203452009 cites W2556131806 @default.
- W3203452009 cites W2580163862 @default.
- W3203452009 cites W2592929672 @default.
- W3203452009 cites W2755930428 @default.
- W3203452009 cites W2759545098 @default.
- W3203452009 cites W2766552816 @default.
- W3203452009 cites W2771678676 @default.
- W3203452009 cites W2780065026 @default.
- W3203452009 cites W2789713147 @default.
- W3203452009 cites W2808312419 @default.
- W3203452009 cites W2890645020 @default.
- W3203452009 cites W2890938833 @default.
- W3203452009 cites W2894799553 @default.
- W3203452009 cites W2901476991 @default.
- W3203452009 cites W2902907175 @default.
- W3203452009 cites W2942380747 @default.
- W3203452009 cites W2955015477 @default.
- W3203452009 cites W2994938339 @default.
- W3203452009 cites W3027722627 @default.
- W3203452009 cites W3027914256 @default.
- W3203452009 cites W3046117575 @default.
- W3203452009 cites W3048502542 @default.
- W3203452009 cites W3056204434 @default.
- W3203452009 cites W3088719758 @default.
- W3203452009 cites W3101123465 @default.
- W3203452009 cites W3126423324 @default.
- W3203452009 cites W3127032923 @default.
- W3203452009 cites W3133722583 @default.
- W3203452009 cites W3135096391 @default.
- W3203452009 cites W3161335554 @default.
- W3203452009 cites W3161646916 @default.
- W3203452009 cites W4245543704 @default.
- W3203452009 doi "https://doi.org/10.1016/j.ejmp.2021.09.006" @default.
- W3203452009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34597891" @default.
- W3203452009 hasPublicationYear "2021" @default.
- W3203452009 type Work @default.
- W3203452009 sameAs 3203452009 @default.
- W3203452009 citedByCount "35" @default.
- W3203452009 countsByYear W32034520092021 @default.
- W3203452009 countsByYear W32034520092022 @default.
- W3203452009 countsByYear W32034520092023 @default.
- W3203452009 crossrefType "journal-article" @default.
- W3203452009 hasAuthorship W3203452009A5034361552 @default.
- W3203452009 hasAuthorship W3203452009A5038089832 @default.
- W3203452009 hasAuthorship W3203452009A5039181443 @default.
- W3203452009 hasBestOaLocation W32034520092 @default.
- W3203452009 hasConcept C103278499 @default.
- W3203452009 hasConcept C105795698 @default.
- W3203452009 hasConcept C108583219 @default.
- W3203452009 hasConcept C115961682 @default.
- W3203452009 hasConcept C119857082 @default.
- W3203452009 hasConcept C139945424 @default.
- W3203452009 hasConcept C146849305 @default.
- W3203452009 hasConcept C153180895 @default.
- W3203452009 hasConcept C154945302 @default.
- W3203452009 hasConcept C2780092901 @default.
- W3203452009 hasConcept C2944601119 @default.
- W3203452009 hasConcept C2989005 @default.
- W3203452009 hasConcept C33923547 @default.
- W3203452009 hasConcept C41008148 @default.
- W3203452009 hasConcept C55078378 @default.
- W3203452009 hasConcept C71924100 @default.
- W3203452009 hasConceptScore W3203452009C103278499 @default.
- W3203452009 hasConceptScore W3203452009C105795698 @default.
- W3203452009 hasConceptScore W3203452009C108583219 @default.
- W3203452009 hasConceptScore W3203452009C115961682 @default.
- W3203452009 hasConceptScore W3203452009C119857082 @default.
- W3203452009 hasConceptScore W3203452009C139945424 @default.
- W3203452009 hasConceptScore W3203452009C146849305 @default.
- W3203452009 hasConceptScore W3203452009C153180895 @default.
- W3203452009 hasConceptScore W3203452009C154945302 @default.
- W3203452009 hasConceptScore W3203452009C2780092901 @default.
- W3203452009 hasConceptScore W3203452009C2944601119 @default.
- W3203452009 hasConceptScore W3203452009C2989005 @default.
- W3203452009 hasConceptScore W3203452009C33923547 @default.
- W3203452009 hasConceptScore W3203452009C41008148 @default.
- W3203452009 hasConceptScore W3203452009C55078378 @default.
- W3203452009 hasConceptScore W3203452009C71924100 @default.