Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203460648> ?p ?o ?g. }
- W3203460648 endingPage "100060" @default.
- W3203460648 startingPage "100060" @default.
- W3203460648 abstract "Retinal toxicity resulting from hydroxychloroquine use manifests photoreceptor loss and disruption of the ellipsoid zone (EZ) reflectivity band detectable on spectral-domain (SD) OCT imaging. This study investigated whether an automatic deep learning-based algorithm can detect and quantitate EZ loss on SD OCT images with an accuracy comparable with that of human annotations.Retrospective analysis of data acquired in a prospective, single-center, case-control study.Eighty-five patients (168 eyes) who were long-term hydroxychloroquine users (average exposure time, 14 ± 7.2 years).A mask region-based convolutional neural network (M-RCNN) was implemented and trained on individual OCT B-scans. Scan-by-scan detections were aggregated to produce an en face map of EZ loss per 3-dimensional SD OCT volume image. To improve the accuracy and robustness of the EZ loss map, a dual network architecture was proposed that learns to detect EZ loss in parallel using horizontal (horizontal mask region-based convolutional neural network [M-RCNNH]) and vertical (vertical mask region-based convolutional neural network [M-RCNNV]) B-scans independently. To quantify accuracy, 10-fold cross-validation was performed.Precision, recall, intersection over union (IOU), F1-score metrics, and measured total EZ loss area were compared against human grader annotations and with the determination of toxicity based on the recommended screening guidelines.The combined projection network demonstrated the best overall performance: precision, 0.90 ± 0.09; recall, 0.88 ± 0.08; and F1 score, 0.89 ± 0.07. The combined model performed superiorly to the M-RCNNH only model (precision, 0.79 ± 0.17; recall, 0.96 ± 0.04; IOU, 0.78 ± 0.15; and F1 score, 0.86 ± 0.12) and M-RCNNV only model (precision, 0.71 ± 0.21; recall, 0.94 ± 0.06; IOU, 0.69 ± 0.21; and F1 score, 0.79 ± 0.16). The accuracy was comparable with the variability of human experts: precision, 0.85 ± 0.09; recall, 0.98 ± 0.01; IOU, 0.82 ± 0.12; and F1 score, 0.91 ± 0.06. Automatically generated en face EZ loss maps provide quantitative SD OCT metrics for accurate toxicity determination combined with other functional testing.The algorithm can provide a fast, objective, automatic method for measuring areas with EZ loss and can serve as a quantitative assistance tool to screen patients for the presence and extent of toxicity." @default.
- W3203460648 created "2021-10-11" @default.
- W3203460648 creator A5011465914 @default.
- W3203460648 creator A5014869687 @default.
- W3203460648 creator A5017028738 @default.
- W3203460648 creator A5050255237 @default.
- W3203460648 creator A5074415788 @default.
- W3203460648 creator A5090802305 @default.
- W3203460648 date "2021-12-01" @default.
- W3203460648 modified "2023-10-05" @default.
- W3203460648 title "Deep Learning-Based Automatic Detection of Ellipsoid Zone Loss in Spectral-Domain OCT for Hydroxychloroquine Retinal Toxicity Screening" @default.
- W3203460648 cites W1974006653 @default.
- W3203460648 cites W1994344419 @default.
- W3203460648 cites W2052408528 @default.
- W3203460648 cites W2095161148 @default.
- W3203460648 cites W2140071542 @default.
- W3203460648 cites W2302013022 @default.
- W3203460648 cites W2323875666 @default.
- W3203460648 cites W2332643163 @default.
- W3203460648 cites W2333998038 @default.
- W3203460648 cites W2501579558 @default.
- W3203460648 cites W2522663397 @default.
- W3203460648 cites W2606534623 @default.
- W3203460648 cites W2735396028 @default.
- W3203460648 cites W2755106885 @default.
- W3203460648 cites W2757213462 @default.
- W3203460648 cites W2766820003 @default.
- W3203460648 cites W2767387764 @default.
- W3203460648 cites W2806070179 @default.
- W3203460648 cites W2891187979 @default.
- W3203460648 cites W2900480178 @default.
- W3203460648 cites W2914748450 @default.
- W3203460648 cites W2939910383 @default.
- W3203460648 cites W2943909961 @default.
- W3203460648 cites W2958836289 @default.
- W3203460648 cites W2997639937 @default.
- W3203460648 cites W3010691220 @default.
- W3203460648 cites W3021662160 @default.
- W3203460648 cites W3048958222 @default.
- W3203460648 cites W639708223 @default.
- W3203460648 doi "https://doi.org/10.1016/j.xops.2021.100060" @default.
- W3203460648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36246938" @default.
- W3203460648 hasPublicationYear "2021" @default.
- W3203460648 type Work @default.
- W3203460648 sameAs 3203460648 @default.
- W3203460648 citedByCount "7" @default.
- W3203460648 countsByYear W32034606482022 @default.
- W3203460648 countsByYear W32034606482023 @default.
- W3203460648 crossrefType "journal-article" @default.
- W3203460648 hasAuthorship W3203460648A5011465914 @default.
- W3203460648 hasAuthorship W3203460648A5014869687 @default.
- W3203460648 hasAuthorship W3203460648A5017028738 @default.
- W3203460648 hasAuthorship W3203460648A5050255237 @default.
- W3203460648 hasAuthorship W3203460648A5074415788 @default.
- W3203460648 hasAuthorship W3203460648A5090802305 @default.
- W3203460648 hasBestOaLocation W32034606481 @default.
- W3203460648 hasConcept C108583219 @default.
- W3203460648 hasConcept C118487528 @default.
- W3203460648 hasConcept C142724271 @default.
- W3203460648 hasConcept C148524875 @default.
- W3203460648 hasConcept C153180895 @default.
- W3203460648 hasConcept C154945302 @default.
- W3203460648 hasConcept C2778818243 @default.
- W3203460648 hasConcept C2779123688 @default.
- W3203460648 hasConcept C2779134260 @default.
- W3203460648 hasConcept C2780827179 @default.
- W3203460648 hasConcept C3008058167 @default.
- W3203460648 hasConcept C31972630 @default.
- W3203460648 hasConcept C41008148 @default.
- W3203460648 hasConcept C524204448 @default.
- W3203460648 hasConcept C71924100 @default.
- W3203460648 hasConcept C81363708 @default.
- W3203460648 hasConceptScore W3203460648C108583219 @default.
- W3203460648 hasConceptScore W3203460648C118487528 @default.
- W3203460648 hasConceptScore W3203460648C142724271 @default.
- W3203460648 hasConceptScore W3203460648C148524875 @default.
- W3203460648 hasConceptScore W3203460648C153180895 @default.
- W3203460648 hasConceptScore W3203460648C154945302 @default.
- W3203460648 hasConceptScore W3203460648C2778818243 @default.
- W3203460648 hasConceptScore W3203460648C2779123688 @default.
- W3203460648 hasConceptScore W3203460648C2779134260 @default.
- W3203460648 hasConceptScore W3203460648C2780827179 @default.
- W3203460648 hasConceptScore W3203460648C3008058167 @default.
- W3203460648 hasConceptScore W3203460648C31972630 @default.
- W3203460648 hasConceptScore W3203460648C41008148 @default.
- W3203460648 hasConceptScore W3203460648C524204448 @default.
- W3203460648 hasConceptScore W3203460648C71924100 @default.
- W3203460648 hasConceptScore W3203460648C81363708 @default.
- W3203460648 hasIssue "4" @default.
- W3203460648 hasLocation W32034606481 @default.
- W3203460648 hasLocation W32034606482 @default.
- W3203460648 hasLocation W32034606483 @default.
- W3203460648 hasLocation W32034606484 @default.
- W3203460648 hasOpenAccess W3203460648 @default.
- W3203460648 hasPrimaryLocation W32034606481 @default.
- W3203460648 hasRelatedWork W2731899572 @default.
- W3203460648 hasRelatedWork W2999805992 @default.
- W3203460648 hasRelatedWork W3011074480 @default.