Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203470617> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3203470617 endingPage "100189" @default.
- W3203470617 startingPage "100189" @default.
- W3203470617 abstract "We consider a dynamic storage allocation model with a finite number of storage spaces. There are m primary spaces and R secondary spaces. Items arrive according to a Poisson process and an arriving item takes the lowest ranked available space. Each item occupies a storage space for an exponentially distributed amount of time. Letting N 1 and N 2 denote the numbers of occupied primary and secondary spaces, we examine the steady-state marginal distribution of N 2 and derive various conditional limit laws for Prob [ N 1 = k ∣ N 2 = r ] . The joint process ( N 1 , N 2 ) behaves as a random walk in a lattice rectangle. We scale the storage capacities m and R to be large and study the problem asymptotically as the Poisson arrival rate λ becomes large. We previously derived detailed asymptotic results for the joint distribution Prob [ N 1 = k , N 2 = r ] and we use these results here to study the marginal and conditional distributions." @default.
- W3203470617 created "2021-10-11" @default.
- W3203470617 creator A5004102766 @default.
- W3203470617 creator A5038794095 @default.
- W3203470617 date "2021-11-01" @default.
- W3203470617 modified "2023-10-18" @default.
- W3203470617 title "Asymptotic analysis of a storage allocation model with finite capacity: Marginal and conditional distributions" @default.
- W3203470617 cites W1968314633 @default.
- W3203470617 cites W1979412081 @default.
- W3203470617 cites W2014861651 @default.
- W3203470617 cites W2048955372 @default.
- W3203470617 cites W2507795961 @default.
- W3203470617 cites W4237217739 @default.
- W3203470617 doi "https://doi.org/10.1016/j.rinam.2021.100189" @default.
- W3203470617 hasPublicationYear "2021" @default.
- W3203470617 type Work @default.
- W3203470617 sameAs 3203470617 @default.
- W3203470617 citedByCount "0" @default.
- W3203470617 crossrefType "journal-article" @default.
- W3203470617 hasAuthorship W3203470617A5004102766 @default.
- W3203470617 hasAuthorship W3203470617A5038794095 @default.
- W3203470617 hasBestOaLocation W32034706171 @default.
- W3203470617 hasConcept C105795698 @default.
- W3203470617 hasConcept C149782125 @default.
- W3203470617 hasConcept C152877465 @default.
- W3203470617 hasConcept C197656967 @default.
- W3203470617 hasConcept C28826006 @default.
- W3203470617 hasConcept C33923547 @default.
- W3203470617 hasConceptScore W3203470617C105795698 @default.
- W3203470617 hasConceptScore W3203470617C149782125 @default.
- W3203470617 hasConceptScore W3203470617C152877465 @default.
- W3203470617 hasConceptScore W3203470617C197656967 @default.
- W3203470617 hasConceptScore W3203470617C28826006 @default.
- W3203470617 hasConceptScore W3203470617C33923547 @default.
- W3203470617 hasLocation W32034706171 @default.
- W3203470617 hasOpenAccess W3203470617 @default.
- W3203470617 hasPrimaryLocation W32034706171 @default.
- W3203470617 hasRelatedWork W2043099224 @default.
- W3203470617 hasRelatedWork W2067341816 @default.
- W3203470617 hasRelatedWork W2114668360 @default.
- W3203470617 hasRelatedWork W2330407128 @default.
- W3203470617 hasRelatedWork W2552050053 @default.
- W3203470617 hasRelatedWork W2952216749 @default.
- W3203470617 hasRelatedWork W2969635709 @default.
- W3203470617 hasRelatedWork W3037784022 @default.
- W3203470617 hasRelatedWork W4229963900 @default.
- W3203470617 hasRelatedWork W4234996786 @default.
- W3203470617 hasVolume "12" @default.
- W3203470617 isParatext "false" @default.
- W3203470617 isRetracted "false" @default.
- W3203470617 magId "3203470617" @default.
- W3203470617 workType "article" @default.