Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203479694> ?p ?o ?g. }
- W3203479694 abstract "A bstract We observe a direct relation between the existence of fundamental axionic strings, dubbed EFT strings, and infinite distance limits in 4d $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = 1 EFTs coupled to gravity. The backreaction of EFT strings can be interpreted as RG flow of their couplings, and allows one to probe different regimes within the field space of the theory. We propose that any 4d EFT infinite distance limit can be realised as an EFT string flow. We show that along such limits the EFT string becomes asymptotically tensionless, and so the EFT eventually breaks down. This provides an upper bound for the maximal field range of an EFT with a finite cut-off, and reproduces the Swampland Distance Conjecture from a bottom-up perspective. Even if there are typically other towers of particles becoming light, we propose that the mass of the leading tower scales as m 2 ∼ $$ mathcal{T} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>T</mml:mi> </mml:math> w in Planck units, with $$ mathcal{T} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>T</mml:mi> </mml:math> the EFT string tension and w a positive integer. Our results hold even in the presence of a non-trivial potential, as long as its energy scale remains well below the cut-off. We check both proposals for large classes of 4d $$ mathcal{N} $$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:mi>N</mml:mi> </mml:math> = 1 string compactifications, finding that only the values w = 1 , 2 , 3 are realised." @default.
- W3203479694 created "2021-10-11" @default.
- W3203479694 creator A5002015269 @default.
- W3203479694 creator A5004998284 @default.
- W3203479694 creator A5042598895 @default.
- W3203479694 creator A5051167212 @default.
- W3203479694 date "2021-09-28" @default.
- W3203479694 modified "2023-10-01" @default.
- W3203479694 title "The EFT stringy viewpoint on large distances" @default.
- W3203479694 cites W110480154 @default.
- W3203479694 cites W1534745613 @default.
- W3203479694 cites W1552551180 @default.
- W3203479694 cites W1580842374 @default.
- W3203479694 cites W1751320414 @default.
- W3203479694 cites W1808910190 @default.
- W3203479694 cites W1821822517 @default.
- W3203479694 cites W1897763870 @default.
- W3203479694 cites W1963955123 @default.
- W3203479694 cites W1979044848 @default.
- W3203479694 cites W1981948325 @default.
- W3203479694 cites W1989514975 @default.
- W3203479694 cites W1998731579 @default.
- W3203479694 cites W2005450797 @default.
- W3203479694 cites W2010409984 @default.
- W3203479694 cites W2016678249 @default.
- W3203479694 cites W2032485802 @default.
- W3203479694 cites W2033586917 @default.
- W3203479694 cites W2035188513 @default.
- W3203479694 cites W2038906081 @default.
- W3203479694 cites W2039512692 @default.
- W3203479694 cites W2046284830 @default.
- W3203479694 cites W2046883610 @default.
- W3203479694 cites W2049152540 @default.
- W3203479694 cites W2052532747 @default.
- W3203479694 cites W2059177657 @default.
- W3203479694 cites W2059786769 @default.
- W3203479694 cites W2060427383 @default.
- W3203479694 cites W2062274524 @default.
- W3203479694 cites W2062551906 @default.
- W3203479694 cites W2071190086 @default.
- W3203479694 cites W2077479110 @default.
- W3203479694 cites W2080584453 @default.
- W3203479694 cites W2084679466 @default.
- W3203479694 cites W2085883170 @default.
- W3203479694 cites W2092610275 @default.
- W3203479694 cites W2092910198 @default.
- W3203479694 cites W2094690040 @default.
- W3203479694 cites W2098411918 @default.
- W3203479694 cites W2102594531 @default.
- W3203479694 cites W2106588418 @default.
- W3203479694 cites W2118445835 @default.
- W3203479694 cites W2118508073 @default.
- W3203479694 cites W2118904906 @default.
- W3203479694 cites W2124841100 @default.
- W3203479694 cites W2136697405 @default.
- W3203479694 cites W2142796941 @default.
- W3203479694 cites W2145527347 @default.
- W3203479694 cites W2146075155 @default.
- W3203479694 cites W2158129746 @default.
- W3203479694 cites W2169255974 @default.
- W3203479694 cites W2173328249 @default.
- W3203479694 cites W2531300678 @default.
- W3203479694 cites W2594541093 @default.
- W3203479694 cites W2788554039 @default.
- W3203479694 cites W2788662179 @default.
- W3203479694 cites W2896386164 @default.
- W3203479694 cites W2904174420 @default.
- W3203479694 cites W2914503121 @default.
- W3203479694 cites W2936193617 @default.
- W3203479694 cites W2950691641 @default.
- W3203479694 cites W2952730267 @default.
- W3203479694 cites W2963336925 @default.
- W3203479694 cites W2982057348 @default.
- W3203479694 cites W3000824485 @default.
- W3203479694 cites W3007363637 @default.
- W3203479694 cites W3013084299 @default.
- W3203479694 cites W3037525506 @default.
- W3203479694 cites W3040809949 @default.
- W3203479694 cites W3090480144 @default.
- W3203479694 cites W3091942606 @default.
- W3203479694 cites W3098276537 @default.
- W3203479694 cites W3098545723 @default.
- W3203479694 cites W3098592656 @default.
- W3203479694 cites W3098805985 @default.
- W3203479694 cites W3098983224 @default.
- W3203479694 cites W3099239133 @default.
- W3203479694 cites W3100085696 @default.
- W3203479694 cites W3100584825 @default.
- W3203479694 cites W3100657906 @default.
- W3203479694 cites W3101601379 @default.
- W3203479694 cites W3101613650 @default.
- W3203479694 cites W3101852326 @default.
- W3203479694 cites W3102123944 @default.
- W3203479694 cites W3102334441 @default.
- W3203479694 cites W3102865305 @default.
- W3203479694 cites W3103835859 @default.
- W3203479694 cites W3104062925 @default.
- W3203479694 cites W3104198207 @default.
- W3203479694 cites W3106132008 @default.
- W3203479694 cites W3106296423 @default.