Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203517268> ?p ?o ?g. }
- W3203517268 abstract "Machine learning techniques have been shown to be effective to recognize different phases of matter and produce phase diagrams in the parameter space interested, while they usually require prior labeled data to perform well. Here, we propose a machine learning procedure, mainly in an unsupervised manner, which can first identify topological/non-topological phases and then refine the locations of phase boundaries. By following this proposed procedure, we expand our previous work on the one-dimensional $p$-wave superconductor [Phys. Rev. B 102, 054512 (2020)] and further on the Su-Schrieffer-Heeger model, with an emphasis on using the quantum entanglement-based quantities as the input features. We find that our method not only reproduces similar results to the previous work with sharp phase boundaries but importantly it also does not rely on prior knowledge of the phase space, e.g., the number of phases present. We conclude with a few remarks about its potential, limitations, and explainabilities." @default.
- W3203517268 created "2021-10-11" @default.
- W3203517268 creator A5000999976 @default.
- W3203517268 creator A5007086865 @default.
- W3203517268 creator A5007716675 @default.
- W3203517268 creator A5031022935 @default.
- W3203517268 creator A5048449799 @default.
- W3203517268 creator A5064667736 @default.
- W3203517268 creator A5072609930 @default.
- W3203517268 creator A5084248275 @default.
- W3203517268 date "2021-10-05" @default.
- W3203517268 modified "2023-09-30" @default.
- W3203517268 title "Deep learning of topological phase transitions from entanglement aspects: An unsupervised way" @default.
- W3203517268 cites W1987971958 @default.
- W3203517268 cites W2003397144 @default.
- W3203517268 cites W2017257315 @default.
- W3203517268 cites W2072703702 @default.
- W3203517268 cites W2150593711 @default.
- W3203517268 cites W2193209126 @default.
- W3203517268 cites W2294798173 @default.
- W3203517268 cites W2337082154 @default.
- W3203517268 cites W2414456771 @default.
- W3203517268 cites W2516533688 @default.
- W3203517268 cites W2525193548 @default.
- W3203517268 cites W2531147647 @default.
- W3203517268 cites W2594041373 @default.
- W3203517268 cites W2612065714 @default.
- W3203517268 cites W2615003501 @default.
- W3203517268 cites W2618945100 @default.
- W3203517268 cites W2623750799 @default.
- W3203517268 cites W2748390680 @default.
- W3203517268 cites W2750673150 @default.
- W3203517268 cites W2786913988 @default.
- W3203517268 cites W2799261665 @default.
- W3203517268 cites W2803328959 @default.
- W3203517268 cites W2919115771 @default.
- W3203517268 cites W2921699286 @default.
- W3203517268 cites W2970988275 @default.
- W3203517268 cites W2973128479 @default.
- W3203517268 cites W3012938368 @default.
- W3203517268 cites W3033945399 @default.
- W3203517268 cites W3083783244 @default.
- W3203517268 cites W3103574423 @default.
- W3203517268 cites W3103722330 @default.
- W3203517268 cites W3104864936 @default.
- W3203517268 cites W3112028493 @default.
- W3203517268 cites W3121811911 @default.
- W3203517268 cites W3125378746 @default.
- W3203517268 doi "https://doi.org/10.1103/physrevb.104.165108" @default.
- W3203517268 hasPublicationYear "2021" @default.
- W3203517268 type Work @default.
- W3203517268 sameAs 3203517268 @default.
- W3203517268 citedByCount "5" @default.
- W3203517268 countsByYear W32035172682022 @default.
- W3203517268 countsByYear W32035172682023 @default.
- W3203517268 crossrefType "journal-article" @default.
- W3203517268 hasAuthorship W3203517268A5000999976 @default.
- W3203517268 hasAuthorship W3203517268A5007086865 @default.
- W3203517268 hasAuthorship W3203517268A5007716675 @default.
- W3203517268 hasAuthorship W3203517268A5031022935 @default.
- W3203517268 hasAuthorship W3203517268A5048449799 @default.
- W3203517268 hasAuthorship W3203517268A5064667736 @default.
- W3203517268 hasAuthorship W3203517268A5072609930 @default.
- W3203517268 hasAuthorship W3203517268A5084248275 @default.
- W3203517268 hasBestOaLocation W32035172682 @default.
- W3203517268 hasConcept C105795698 @default.
- W3203517268 hasConcept C111919701 @default.
- W3203517268 hasConcept C114614502 @default.
- W3203517268 hasConcept C121040770 @default.
- W3203517268 hasConcept C121332964 @default.
- W3203517268 hasConcept C121864883 @default.
- W3203517268 hasConcept C151342819 @default.
- W3203517268 hasConcept C154945302 @default.
- W3203517268 hasConcept C184720557 @default.
- W3203517268 hasConcept C2778572836 @default.
- W3203517268 hasConcept C33332235 @default.
- W3203517268 hasConcept C33923547 @default.
- W3203517268 hasConcept C41008148 @default.
- W3203517268 hasConcept C44280652 @default.
- W3203517268 hasConcept C54101563 @default.
- W3203517268 hasConcept C62520636 @default.
- W3203517268 hasConcept C73586568 @default.
- W3203517268 hasConcept C8038995 @default.
- W3203517268 hasConcept C84114770 @default.
- W3203517268 hasConceptScore W3203517268C105795698 @default.
- W3203517268 hasConceptScore W3203517268C111919701 @default.
- W3203517268 hasConceptScore W3203517268C114614502 @default.
- W3203517268 hasConceptScore W3203517268C121040770 @default.
- W3203517268 hasConceptScore W3203517268C121332964 @default.
- W3203517268 hasConceptScore W3203517268C121864883 @default.
- W3203517268 hasConceptScore W3203517268C151342819 @default.
- W3203517268 hasConceptScore W3203517268C154945302 @default.
- W3203517268 hasConceptScore W3203517268C184720557 @default.
- W3203517268 hasConceptScore W3203517268C2778572836 @default.
- W3203517268 hasConceptScore W3203517268C33332235 @default.
- W3203517268 hasConceptScore W3203517268C33923547 @default.
- W3203517268 hasConceptScore W3203517268C41008148 @default.
- W3203517268 hasConceptScore W3203517268C44280652 @default.
- W3203517268 hasConceptScore W3203517268C54101563 @default.
- W3203517268 hasConceptScore W3203517268C62520636 @default.