Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203640873> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3203640873 endingPage "290" @default.
- W3203640873 startingPage "290" @default.
- W3203640873 abstract "Accurate identification of insect pests is the key to improve crop yield and ensure quality and safety. However, under the influence of environmental conditions, the same kind of pests show obvious differences in intraclass representation, while the different kinds of pests show slight similarities. The traditional methods have been difficult to deal with fine-grained identification of pests, and their practical deployment is low. In order to solve this problem, this paper uses a variety of equipment terminals in the agricultural Internet of Things to obtain a large number of pest images and proposes a fine-grained identification model of pests based on probability fusion network FPNT. This model designs a fine-grained feature extractor based on an optimized CSPNet backbone network, mining different levels of local feature expression that can distinguish subtle differences. After the integration of the NetVLAD aggregation layer, the gated probability fusion layer gives full play to the advantages of information complementarity and confidence coupling of multi-model fusion. The comparison test shows that the PFNT model has an average recognition accuracy of 93.18% for all kinds of pests, and its performance is better than other deep-learning methods, with the average processing time drop to 61 ms, which can meet the needs of fine-grained image recognition of pests in the Internet of Things in agricultural and forestry practice, and provide technical application reference for intelligent early warning and prevention of pests." @default.
- W3203640873 created "2021-10-11" @default.
- W3203640873 creator A5013257129 @default.
- W3203640873 creator A5025536472 @default.
- W3203640873 creator A5065800868 @default.
- W3203640873 creator A5078439347 @default.
- W3203640873 creator A5080902669 @default.
- W3203640873 creator A5086107358 @default.
- W3203640873 date "2021-09-30" @default.
- W3203640873 modified "2023-10-18" @default.
- W3203640873 title "Fine-Grained Pests Recognition Based on Truncated Probability Fusion Network via Internet of Things in Forestry and Agricultural Scenes" @default.
- W3203640873 cites W2473156356 @default.
- W3203640873 cites W2618530766 @default.
- W3203640873 cites W2753403518 @default.
- W3203640873 cites W2789255992 @default.
- W3203640873 cites W2799842361 @default.
- W3203640873 cites W2914353073 @default.
- W3203640873 cites W2915594101 @default.
- W3203640873 cites W2965434755 @default.
- W3203640873 cites W2967553555 @default.
- W3203640873 cites W2968972446 @default.
- W3203640873 cites W2999209878 @default.
- W3203640873 cites W3004337988 @default.
- W3203640873 cites W3011313660 @default.
- W3203640873 cites W3036085849 @default.
- W3203640873 cites W3092527948 @default.
- W3203640873 cites W3121061995 @default.
- W3203640873 cites W3129717984 @default.
- W3203640873 cites W3130071898 @default.
- W3203640873 cites W3136018460 @default.
- W3203640873 cites W3152830573 @default.
- W3203640873 cites W3162877622 @default.
- W3203640873 cites W4233510970 @default.
- W3203640873 doi "https://doi.org/10.3390/a14100290" @default.
- W3203640873 hasPublicationYear "2021" @default.
- W3203640873 type Work @default.
- W3203640873 sameAs 3203640873 @default.
- W3203640873 citedByCount "1" @default.
- W3203640873 countsByYear W32036408732023 @default.
- W3203640873 crossrefType "journal-article" @default.
- W3203640873 hasAuthorship W3203640873A5013257129 @default.
- W3203640873 hasAuthorship W3203640873A5025536472 @default.
- W3203640873 hasAuthorship W3203640873A5065800868 @default.
- W3203640873 hasAuthorship W3203640873A5078439347 @default.
- W3203640873 hasAuthorship W3203640873A5080902669 @default.
- W3203640873 hasAuthorship W3203640873A5086107358 @default.
- W3203640873 hasBestOaLocation W32036408731 @default.
- W3203640873 hasConcept C110875604 @default.
- W3203640873 hasConcept C116834253 @default.
- W3203640873 hasConcept C119857082 @default.
- W3203640873 hasConcept C124101348 @default.
- W3203640873 hasConcept C136764020 @default.
- W3203640873 hasConcept C154945302 @default.
- W3203640873 hasConcept C41008148 @default.
- W3203640873 hasConcept C59822182 @default.
- W3203640873 hasConcept C86803240 @default.
- W3203640873 hasConceptScore W3203640873C110875604 @default.
- W3203640873 hasConceptScore W3203640873C116834253 @default.
- W3203640873 hasConceptScore W3203640873C119857082 @default.
- W3203640873 hasConceptScore W3203640873C124101348 @default.
- W3203640873 hasConceptScore W3203640873C136764020 @default.
- W3203640873 hasConceptScore W3203640873C154945302 @default.
- W3203640873 hasConceptScore W3203640873C41008148 @default.
- W3203640873 hasConceptScore W3203640873C59822182 @default.
- W3203640873 hasConceptScore W3203640873C86803240 @default.
- W3203640873 hasFunder F4320321001 @default.
- W3203640873 hasFunder F4320322919 @default.
- W3203640873 hasFunder F4320335777 @default.
- W3203640873 hasIssue "10" @default.
- W3203640873 hasLocation W32036408731 @default.
- W3203640873 hasLocation W32036408732 @default.
- W3203640873 hasOpenAccess W3203640873 @default.
- W3203640873 hasPrimaryLocation W32036408731 @default.
- W3203640873 hasRelatedWork W1986086402 @default.
- W3203640873 hasRelatedWork W2961085424 @default.
- W3203640873 hasRelatedWork W3046775127 @default.
- W3203640873 hasRelatedWork W3170094116 @default.
- W3203640873 hasRelatedWork W4205958290 @default.
- W3203640873 hasRelatedWork W4285260836 @default.
- W3203640873 hasRelatedWork W4286629047 @default.
- W3203640873 hasRelatedWork W4306321456 @default.
- W3203640873 hasRelatedWork W4306674287 @default.
- W3203640873 hasRelatedWork W4224009465 @default.
- W3203640873 hasVolume "14" @default.
- W3203640873 isParatext "false" @default.
- W3203640873 isRetracted "false" @default.
- W3203640873 magId "3203640873" @default.
- W3203640873 workType "article" @default.