Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203642021> ?p ?o ?g. }
- W3203642021 abstract "Abstract Electrophysiological recordings from freely behaving animals are a widespread and powerful mode of investigation in sleep research. These recordings generate large amounts of data that require sleep stage annotation (polysomnography), in which the data is parcellated according to three vigilance states: awake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. Manual and computational annotation methods currently ignore intermediate states because the classification features become ambiguous. However, these intermediate states contain important information regarding vigilance state dynamics. Here, we present a new classifier, “Somnotate”, which produces automated annotation accuracies that exceed human expert performance on mouse electrophysiological data, is robust to errors in the training data, compatible with different recording configurations, and maintains high performance during experimental interventions. Somnotate is a probabilistic classifier based on a combination of linear discriminant analysis (LDA) with a hidden Markov model (HMM). A unique feature of Somnotate is that it quantifies and reports the certainty of its annotations, enabling the experimenter to identify ambiguous recording periods in a principled manner. We leverage this feature to identify epochs that exhibit intermediate vigilance states, revealing that many of these cluster around state transitions, whereas others correspond to failed attempts to transition. We show that the success rates of different transitions can be experimentally manipulated and explain previously observed sleep patterns. Somnotate can thus facilitate the study of sleep stage transitions and offers new insight into the mechanisms underlying sleep-wake dynamics. Author summary Typically, the three different vigilance states – awake, REM sleep, and non-REM sleep – exhibit distinct features that are readily recognised in electrophysiological recordings. However, particularly around vigilance state transitions, epochs often exhibit features from more than one state. These intermediate vigilance states pose challenges for existing manual and automated classification methods, and are hence often ignored. Here, we present ‘Somnotate’ - an open-source, highly accurate and robust sleep stage classifier, which supports research into intermediate states and sleep stage dynamics. Somnotate quantifies and reports the certainty of its annotations, enabling the experimenter to identify abnormal epochs in a principled manner. We use this feature to identify intermediate states and to detect unsuccessful attempts to switch between vigilance states. This provides new insights into the mechanisms of vigilance state transitions in mice, and creates new opportunities for future experiments." @default.
- W3203642021 created "2021-10-11" @default.
- W3203642021 creator A5002788590 @default.
- W3203642021 creator A5003273271 @default.
- W3203642021 creator A5027487752 @default.
- W3203642021 creator A5032933053 @default.
- W3203642021 creator A5040774509 @default.
- W3203642021 creator A5042728114 @default.
- W3203642021 creator A5048550841 @default.
- W3203642021 creator A5052690772 @default.
- W3203642021 creator A5052700816 @default.
- W3203642021 creator A5053168396 @default.
- W3203642021 creator A5057346968 @default.
- W3203642021 creator A5058990653 @default.
- W3203642021 creator A5059388524 @default.
- W3203642021 creator A5061367170 @default.
- W3203642021 creator A5076619189 @default.
- W3203642021 creator A5083155695 @default.
- W3203642021 date "2021-10-08" @default.
- W3203642021 modified "2023-10-17" @default.
- W3203642021 title "Somnotate: A probabilistic sleep stage classifier for studying vigilance state transitions" @default.
- W3203642021 cites W1963756232 @default.
- W3203642021 cites W1965092590 @default.
- W3203642021 cites W1973117088 @default.
- W3203642021 cites W1979211829 @default.
- W3203642021 cites W1982978331 @default.
- W3203642021 cites W1991133427 @default.
- W3203642021 cites W1991978162 @default.
- W3203642021 cites W1996709320 @default.
- W3203642021 cites W2001619934 @default.
- W3203642021 cites W2004024143 @default.
- W3203642021 cites W2017689092 @default.
- W3203642021 cites W2030409995 @default.
- W3203642021 cites W2037219364 @default.
- W3203642021 cites W2038999399 @default.
- W3203642021 cites W2039029351 @default.
- W3203642021 cites W2054384069 @default.
- W3203642021 cites W2060673109 @default.
- W3203642021 cites W2070391184 @default.
- W3203642021 cites W2074205443 @default.
- W3203642021 cites W2079887570 @default.
- W3203642021 cites W2088993762 @default.
- W3203642021 cites W2125337181 @default.
- W3203642021 cites W2131659142 @default.
- W3203642021 cites W2132564618 @default.
- W3203642021 cites W2164082066 @default.
- W3203642021 cites W2172894528 @default.
- W3203642021 cites W2232931790 @default.
- W3203642021 cites W2277019871 @default.
- W3203642021 cites W2406124037 @default.
- W3203642021 cites W2537313490 @default.
- W3203642021 cites W2548868034 @default.
- W3203642021 cites W2588327383 @default.
- W3203642021 cites W2616271045 @default.
- W3203642021 cites W2771338643 @default.
- W3203642021 cites W2796120867 @default.
- W3203642021 cites W2805033630 @default.
- W3203642021 cites W2806710167 @default.
- W3203642021 cites W2899288727 @default.
- W3203642021 cites W2904408089 @default.
- W3203642021 cites W2917012151 @default.
- W3203642021 cites W2917576966 @default.
- W3203642021 cites W2963919481 @default.
- W3203642021 cites W2967566189 @default.
- W3203642021 cites W2968632081 @default.
- W3203642021 cites W2981661121 @default.
- W3203642021 cites W3027109451 @default.
- W3203642021 cites W3044656331 @default.
- W3203642021 cites W3121036262 @default.
- W3203642021 cites W3191528051 @default.
- W3203642021 cites W4237768302 @default.
- W3203642021 cites W4297806271 @default.
- W3203642021 doi "https://doi.org/10.1101/2021.10.06.463356" @default.
- W3203642021 hasPublicationYear "2021" @default.
- W3203642021 type Work @default.
- W3203642021 sameAs 3203642021 @default.
- W3203642021 citedByCount "1" @default.
- W3203642021 countsByYear W32036420212022 @default.
- W3203642021 crossrefType "posted-content" @default.
- W3203642021 hasAuthorship W3203642021A5002788590 @default.
- W3203642021 hasAuthorship W3203642021A5003273271 @default.
- W3203642021 hasAuthorship W3203642021A5027487752 @default.
- W3203642021 hasAuthorship W3203642021A5032933053 @default.
- W3203642021 hasAuthorship W3203642021A5040774509 @default.
- W3203642021 hasAuthorship W3203642021A5042728114 @default.
- W3203642021 hasAuthorship W3203642021A5048550841 @default.
- W3203642021 hasAuthorship W3203642021A5052690772 @default.
- W3203642021 hasAuthorship W3203642021A5052700816 @default.
- W3203642021 hasAuthorship W3203642021A5053168396 @default.
- W3203642021 hasAuthorship W3203642021A5057346968 @default.
- W3203642021 hasAuthorship W3203642021A5058990653 @default.
- W3203642021 hasAuthorship W3203642021A5059388524 @default.
- W3203642021 hasAuthorship W3203642021A5061367170 @default.
- W3203642021 hasAuthorship W3203642021A5076619189 @default.
- W3203642021 hasAuthorship W3203642021A5083155695 @default.
- W3203642021 hasBestOaLocation W32036420211 @default.
- W3203642021 hasConcept C119857082 @default.
- W3203642021 hasConcept C153050134 @default.
- W3203642021 hasConcept C153180895 @default.
- W3203642021 hasConcept C154945302 @default.