Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203657569> ?p ?o ?g. }
- W3203657569 endingPage "3719" @default.
- W3203657569 startingPage "3710" @default.
- W3203657569 abstract "ConspectusRedox reactions that take place in enzymes and on the surfaces of heterogeneous catalysts often require active sites that contain multiple metals. By contrast, there are very few homogeneous catalysts with multinuclear active sites, and the field of organometallic chemistry continues to be dominated by the study of single metal systems. Multinuclear catalysts have the potential to display unique properties owing to their ability to cooperatively engage substrates. Furthermore, direct metal-to-metal covalent bonding can give rise to new electronic configurations that dramatically impact substrate binding and reactivity. In order to effectively capitalize on these features, it is necessary to consider strategies to avoid the dissociation of fragile metal–metal bonds in the course of a catalytic cycle. This Account describes one approach to accomplishing this goal using binucleating redox-active ligands.In 2006, Chirik showed that pyridine–diimines (PDI) have sufficiently low-lying π* levels that they can be redox-noninnocent in low-valent iron complexes. Extending this concept, we investigated a series of dinickel complexes supported by naphthyridine–diimine (NDI) ligands. These complexes can promote a broad range of two-electron redox processes in which the NDI ligand manages electron equivalents while the metals remain in a Ni(I)–Ni(I) state.Using (NDI)Ni2 catalysts, we have uncovered cases where having two metals in the active site addresses a problem in catalysis that had not been adequately solved using single-metal systems. For example, mononickel complexes are capable of stoichiometrically dimerizing aryl azides to form azoarenes but do not turn over due to strong product inhibition. By contrast, dinickel complexes are effective catalysts for this reaction and avoid this thermodynamic sink by binding to azoarenes in their higher-energy cis form.Dinickel complexes can also activate strong bonds through the cooperative action of both metals. Norbornadiene has a ring-strain energy that is similar to that of cyclopropane but is not prone to undergoing C–C oxidative addition with monometallic complexes. Using an (NDI)Ni2 complex, norbornadiene undergoes rapid ring opening by the oxidative addition of the vinyl and bridgehead carbons. An inspection of the resulting metallacycle reveals that it is stabilized through a network of secondary Ni−π interactions. This reactivity enabled the development of a catalytic carbonylative rearrangement to form fused bicyclic dienones.These vignettes and others described in this Account highlight some of the implications of metal–metal bonding in promoting a challenging step in a catalytic cycle or adjusting the thermodynamic landscape of key intermediates. Given that our studies have focused nearly exclusively on the (NDI)Ni2 system, we anticipate that many more such cases are left to be discovered as other transition-metal combinations and ligand classes are explored." @default.
- W3203657569 created "2021-10-11" @default.
- W3203657569 creator A5024172968 @default.
- W3203657569 creator A5060118311 @default.
- W3203657569 date "2021-09-27" @default.
- W3203657569 modified "2023-10-15" @default.
- W3203657569 title "Dinickel Active Sites Supported by Redox-Active Ligands" @default.
- W3203657569 cites W1644259048 @default.
- W3203657569 cites W1886187730 @default.
- W3203657569 cites W1965067084 @default.
- W3203657569 cites W1968191262 @default.
- W3203657569 cites W1968261716 @default.
- W3203657569 cites W1969754163 @default.
- W3203657569 cites W1970124644 @default.
- W3203657569 cites W1970225878 @default.
- W3203657569 cites W1976603595 @default.
- W3203657569 cites W1977755191 @default.
- W3203657569 cites W1978243262 @default.
- W3203657569 cites W1979513828 @default.
- W3203657569 cites W1983417168 @default.
- W3203657569 cites W1984605747 @default.
- W3203657569 cites W1986670202 @default.
- W3203657569 cites W1988287280 @default.
- W3203657569 cites W1989807773 @default.
- W3203657569 cites W1991074080 @default.
- W3203657569 cites W1997458875 @default.
- W3203657569 cites W1999913168 @default.
- W3203657569 cites W2011393168 @default.
- W3203657569 cites W2024434160 @default.
- W3203657569 cites W2029266122 @default.
- W3203657569 cites W2032325305 @default.
- W3203657569 cites W2040569466 @default.
- W3203657569 cites W2044856625 @default.
- W3203657569 cites W2048081857 @default.
- W3203657569 cites W2049446153 @default.
- W3203657569 cites W2057894117 @default.
- W3203657569 cites W2065948329 @default.
- W3203657569 cites W2069348739 @default.
- W3203657569 cites W2070393527 @default.
- W3203657569 cites W2071765830 @default.
- W3203657569 cites W2074888123 @default.
- W3203657569 cites W2076486952 @default.
- W3203657569 cites W2084904437 @default.
- W3203657569 cites W2087101798 @default.
- W3203657569 cites W2088224647 @default.
- W3203657569 cites W2093731515 @default.
- W3203657569 cites W2094783641 @default.
- W3203657569 cites W2099531933 @default.
- W3203657569 cites W2108650821 @default.
- W3203657569 cites W2116393429 @default.
- W3203657569 cites W2119016897 @default.
- W3203657569 cites W2135481611 @default.
- W3203657569 cites W2137041649 @default.
- W3203657569 cites W2150657722 @default.
- W3203657569 cites W2154828790 @default.
- W3203657569 cites W2159072415 @default.
- W3203657569 cites W2169139186 @default.
- W3203657569 cites W2219740651 @default.
- W3203657569 cites W2285034312 @default.
- W3203657569 cites W2312225714 @default.
- W3203657569 cites W2313732901 @default.
- W3203657569 cites W2332624181 @default.
- W3203657569 cites W2475358113 @default.
- W3203657569 cites W2484155632 @default.
- W3203657569 cites W2518275206 @default.
- W3203657569 cites W2559821241 @default.
- W3203657569 cites W2575724262 @default.
- W3203657569 cites W2609997517 @default.
- W3203657569 cites W2615259598 @default.
- W3203657569 cites W2621225527 @default.
- W3203657569 cites W2734764430 @default.
- W3203657569 cites W2753965436 @default.
- W3203657569 cites W2787146994 @default.
- W3203657569 cites W2791867329 @default.
- W3203657569 cites W2809346019 @default.
- W3203657569 cites W283184656 @default.
- W3203657569 cites W2912363413 @default.
- W3203657569 cites W2917734609 @default.
- W3203657569 cites W2937531083 @default.
- W3203657569 cites W2944380193 @default.
- W3203657569 cites W2950657871 @default.
- W3203657569 cites W2952740688 @default.
- W3203657569 cites W2953105897 @default.
- W3203657569 cites W2960746769 @default.
- W3203657569 cites W3033776218 @default.
- W3203657569 cites W3083289707 @default.
- W3203657569 cites W3088397431 @default.
- W3203657569 cites W3093229346 @default.
- W3203657569 cites W3130660287 @default.
- W3203657569 cites W3134986307 @default.
- W3203657569 doi "https://doi.org/10.1021/acs.accounts.1c00424" @default.
- W3203657569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34565142" @default.
- W3203657569 hasPublicationYear "2021" @default.
- W3203657569 type Work @default.
- W3203657569 sameAs 3203657569 @default.
- W3203657569 citedByCount "15" @default.
- W3203657569 countsByYear W32036575692021 @default.
- W3203657569 countsByYear W32036575692022 @default.