Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203658081> ?p ?o ?g. }
- W3203658081 endingPage "151504" @default.
- W3203658081 startingPage "151504" @default.
- W3203658081 abstract "This secondary data analysis study aimed to (1) investigate the use of two sense-based parameters (movement and sleep hours) as predictors of chronic pain when controlling for patient demographics and depression, and (2) identify a classification model with accuracy in predicting chronic pain. Data collected by Oregon Health & Science University between March 2018 and December 2019 under the Collaborative Aging Research Using Technology Initiative were analyzed in two stages. Data were collected by sensor technologies and questionnaires from older adults living independently or with a partner in the community. In Stage 1, regression models were employed to determine unique sensor-based behavioral predictors of pain. These sensor-based parameters were used to create a classification model to predict the weekly recalled pain intensity and interference level using a deep neural network model, a machine learning approach, in Stage 2. Daily step count was a unique predictor for both pain intensity (75% Accuracy, F1 = 0.58) and pain interference (82% Accuracy, F1 = 0.59). The developed classification model performed well in this dataset with acceptable accuracy scores. This study demonstrated that machine learning technique can be used to identify the relationship between patients' pain and the risk factors." @default.
- W3203658081 created "2021-10-11" @default.
- W3203658081 creator A5001457193 @default.
- W3203658081 creator A5010680295 @default.
- W3203658081 creator A5024374739 @default.
- W3203658081 creator A5032832962 @default.
- W3203658081 creator A5053452793 @default.
- W3203658081 creator A5057226409 @default.
- W3203658081 creator A5080110117 @default.
- W3203658081 creator A5089665236 @default.
- W3203658081 date "2021-12-01" @default.
- W3203658081 modified "2023-10-14" @default.
- W3203658081 title "A classification algorithm to predict chronic pain using both regression and machine learning – A stepwise approach" @default.
- W3203658081 cites W1582404770 @default.
- W3203658081 cites W1590127867 @default.
- W3203658081 cites W1963486716 @default.
- W3203658081 cites W1964081154 @default.
- W3203658081 cites W1970369207 @default.
- W3203658081 cites W1970517978 @default.
- W3203658081 cites W1972763487 @default.
- W3203658081 cites W1983295030 @default.
- W3203658081 cites W1987232870 @default.
- W3203658081 cites W2014436788 @default.
- W3203658081 cites W2014587614 @default.
- W3203658081 cites W2040128850 @default.
- W3203658081 cites W2058269934 @default.
- W3203658081 cites W2064675550 @default.
- W3203658081 cites W2071317972 @default.
- W3203658081 cites W2079693415 @default.
- W3203658081 cites W2085705622 @default.
- W3203658081 cites W2086803998 @default.
- W3203658081 cites W2110112325 @default.
- W3203658081 cites W2122354255 @default.
- W3203658081 cites W2148694444 @default.
- W3203658081 cites W2284056576 @default.
- W3203658081 cites W2464608103 @default.
- W3203658081 cites W2583251805 @default.
- W3203658081 cites W2620011291 @default.
- W3203658081 cites W2769912512 @default.
- W3203658081 cites W2792919287 @default.
- W3203658081 cites W2808405426 @default.
- W3203658081 cites W2891660975 @default.
- W3203658081 cites W2944010067 @default.
- W3203658081 cites W2964116189 @default.
- W3203658081 cites W3000162212 @default.
- W3203658081 cites W3004922704 @default.
- W3203658081 cites W3005648791 @default.
- W3203658081 cites W3039227362 @default.
- W3203658081 cites W3091954518 @default.
- W3203658081 cites W336090895 @default.
- W3203658081 doi "https://doi.org/10.1016/j.apnr.2021.151504" @default.
- W3203658081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34815000" @default.
- W3203658081 hasPublicationYear "2021" @default.
- W3203658081 type Work @default.
- W3203658081 sameAs 3203658081 @default.
- W3203658081 citedByCount "4" @default.
- W3203658081 countsByYear W32036580812022 @default.
- W3203658081 countsByYear W32036580812023 @default.
- W3203658081 crossrefType "journal-article" @default.
- W3203658081 hasAuthorship W3203658081A5001457193 @default.
- W3203658081 hasAuthorship W3203658081A5010680295 @default.
- W3203658081 hasAuthorship W3203658081A5024374739 @default.
- W3203658081 hasAuthorship W3203658081A5032832962 @default.
- W3203658081 hasAuthorship W3203658081A5053452793 @default.
- W3203658081 hasAuthorship W3203658081A5057226409 @default.
- W3203658081 hasAuthorship W3203658081A5080110117 @default.
- W3203658081 hasAuthorship W3203658081A5089665236 @default.
- W3203658081 hasBestOaLocation W32036580811 @default.
- W3203658081 hasConcept C105795698 @default.
- W3203658081 hasConcept C108583219 @default.
- W3203658081 hasConcept C119857082 @default.
- W3203658081 hasConcept C144024400 @default.
- W3203658081 hasConcept C149923435 @default.
- W3203658081 hasConcept C152877465 @default.
- W3203658081 hasConcept C154945302 @default.
- W3203658081 hasConcept C170964787 @default.
- W3203658081 hasConcept C1862650 @default.
- W3203658081 hasConcept C2780084366 @default.
- W3203658081 hasConcept C2781118164 @default.
- W3203658081 hasConcept C33923547 @default.
- W3203658081 hasConcept C41008148 @default.
- W3203658081 hasConcept C50644808 @default.
- W3203658081 hasConcept C71924100 @default.
- W3203658081 hasConcept C83546350 @default.
- W3203658081 hasConceptScore W3203658081C105795698 @default.
- W3203658081 hasConceptScore W3203658081C108583219 @default.
- W3203658081 hasConceptScore W3203658081C119857082 @default.
- W3203658081 hasConceptScore W3203658081C144024400 @default.
- W3203658081 hasConceptScore W3203658081C149923435 @default.
- W3203658081 hasConceptScore W3203658081C152877465 @default.
- W3203658081 hasConceptScore W3203658081C154945302 @default.
- W3203658081 hasConceptScore W3203658081C170964787 @default.
- W3203658081 hasConceptScore W3203658081C1862650 @default.
- W3203658081 hasConceptScore W3203658081C2780084366 @default.
- W3203658081 hasConceptScore W3203658081C2781118164 @default.
- W3203658081 hasConceptScore W3203658081C33923547 @default.
- W3203658081 hasConceptScore W3203658081C41008148 @default.
- W3203658081 hasConceptScore W3203658081C50644808 @default.