Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203671635> ?p ?o ?g. }
- W3203671635 endingPage "5311" @default.
- W3203671635 startingPage "5291" @default.
- W3203671635 abstract "Waters impounded behind dams (i.e., reservoirs) are important sources of greenhouses gases (GHGs), especially methane (CH4), but emission estimates are not well constrained due to high spatial and temporal variability, limitations in monitoring methods to characterize hot spot and hot moment emissions, and the limited number of studies that investigate diurnal, seasonal, and interannual patterns in emissions. In this study, we investigate the temporal patterns and biophysical drivers of CH4 emissions from Acton Lake, a small eutrophic reservoir, using a combination of methods: eddy covariance monitoring, continuous warm-season ebullition measurements, spatial emission surveys, and measurements of key drivers of CH4 production and emission. We used an artificial neural network to gap fill the eddy covariance time series and to explore the relative importance of biophysical drivers on the interannual timescale. We combined spatial and temporal monitoring information to estimate annual whole-reservoir emissions. Acton Lake had cumulative areal emission rates of 45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m-2 in 2017 and 2018, respectively, or 109 ± 14 and 123 ± 10 Mg CH4 in 2017 and 2018 across the whole 2.4 km2 area of the lake. The main difference between years was a period of elevated emissions lasting less than 2 weeks in the spring of 2018, which contributed 17 % of the annual emissions in the shallow region of the reservoir. The spring burst coincided with a phytoplankton bloom, which was likely driven by favorable precipitation and temperature conditions in 2018 compared to 2017. Combining spatially extensive measurements with temporally continuous monitoring enabled us to quantify aspects of the spatial and temporal variability in CH4 emission. We found that the relationships between CH4 emissions and sediment temperature depended on location within the reservoir, and we observed a clear spatiotemporal offset in maximum CH4 emissions as a function of reservoir depth. These findings suggest a strong spatial pattern in CH4 biogeochemistry within this relatively small (2.4 km2) reservoir. In addressing the need for a better understanding of GHG emissions from reservoirs, there is a trade-off in intensive measurements of one water body vs. short-term and/or spatially limited measurements in many water bodies. The insights from multi-year, continuous, spatially extensive studies like this one can be used to inform both the study design and emission upscaling from spatially or temporally limited results, specifically the importance of trophic status and intra-reservoir variability in assumptions about upscaling CH4 emissions." @default.
- W3203671635 created "2021-10-11" @default.
- W3203671635 creator A5000117941 @default.
- W3203671635 creator A5008288255 @default.
- W3203671635 creator A5037943917 @default.
- W3203671635 creator A5040168144 @default.
- W3203671635 creator A5046246167 @default.
- W3203671635 creator A5075504742 @default.
- W3203671635 creator A5086854784 @default.
- W3203671635 date "2021-09-30" @default.
- W3203671635 modified "2023-10-10" @default.
- W3203671635 title "Temporal trends in methane emissions from a small eutrophic reservoir: the key role of a spring burst" @default.
- W3203671635 cites W1498104743 @default.
- W3203671635 cites W1511035484 @default.
- W3203671635 cites W1552456432 @default.
- W3203671635 cites W1568184311 @default.
- W3203671635 cites W1589281509 @default.
- W3203671635 cites W1640097772 @default.
- W3203671635 cites W1838347895 @default.
- W3203671635 cites W1914249180 @default.
- W3203671635 cites W194869310 @default.
- W3203671635 cites W1969112274 @default.
- W3203671635 cites W1979563121 @default.
- W3203671635 cites W1984352241 @default.
- W3203671635 cites W2035320806 @default.
- W3203671635 cites W2042843036 @default.
- W3203671635 cites W2044247101 @default.
- W3203671635 cites W2047575934 @default.
- W3203671635 cites W2051825471 @default.
- W3203671635 cites W2052231490 @default.
- W3203671635 cites W2066943064 @default.
- W3203671635 cites W2069040383 @default.
- W3203671635 cites W2074558441 @default.
- W3203671635 cites W2077125641 @default.
- W3203671635 cites W2083358939 @default.
- W3203671635 cites W2085455428 @default.
- W3203671635 cites W2089862340 @default.
- W3203671635 cites W2097115747 @default.
- W3203671635 cites W2098618837 @default.
- W3203671635 cites W2100468073 @default.
- W3203671635 cites W2103869356 @default.
- W3203671635 cites W2105209207 @default.
- W3203671635 cites W2110230861 @default.
- W3203671635 cites W2123311730 @default.
- W3203671635 cites W2126349225 @default.
- W3203671635 cites W2130039200 @default.
- W3203671635 cites W2131223236 @default.
- W3203671635 cites W2145505730 @default.
- W3203671635 cites W2146421864 @default.
- W3203671635 cites W2148693616 @default.
- W3203671635 cites W2149794122 @default.
- W3203671635 cites W2150332776 @default.
- W3203671635 cites W2150897594 @default.
- W3203671635 cites W2151478249 @default.
- W3203671635 cites W2159345526 @default.
- W3203671635 cites W2163042615 @default.
- W3203671635 cites W2172267151 @default.
- W3203671635 cites W2201685515 @default.
- W3203671635 cites W2229912585 @default.
- W3203671635 cites W2321629925 @default.
- W3203671635 cites W2346143368 @default.
- W3203671635 cites W2404417947 @default.
- W3203671635 cites W2460505801 @default.
- W3203671635 cites W2463211086 @default.
- W3203671635 cites W2481291664 @default.
- W3203671635 cites W2503692581 @default.
- W3203671635 cites W2527674082 @default.
- W3203671635 cites W2567873248 @default.
- W3203671635 cites W2596639275 @default.
- W3203671635 cites W2623899620 @default.
- W3203671635 cites W2751059238 @default.
- W3203671635 cites W2751869489 @default.
- W3203671635 cites W2770411579 @default.
- W3203671635 cites W2791659248 @default.
- W3203671635 cites W2793477774 @default.
- W3203671635 cites W2898848247 @default.
- W3203671635 cites W2905523487 @default.
- W3203671635 cites W2943831925 @default.
- W3203671635 cites W2956252856 @default.
- W3203671635 cites W2981373648 @default.
- W3203671635 cites W2995202448 @default.
- W3203671635 cites W3000264081 @default.
- W3203671635 cites W3023693656 @default.
- W3203671635 cites W3093367522 @default.
- W3203671635 cites W3113442478 @default.
- W3203671635 cites W3135033083 @default.
- W3203671635 cites W3150007929 @default.
- W3203671635 cites W3203671635 @default.
- W3203671635 cites W40766355 @default.
- W3203671635 cites W76945852 @default.
- W3203671635 doi "https://doi.org/10.5194/bg-18-5291-2021" @default.
- W3203671635 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35126532" @default.
- W3203671635 hasPublicationYear "2021" @default.
- W3203671635 type Work @default.
- W3203671635 sameAs 3203671635 @default.
- W3203671635 citedByCount "11" @default.
- W3203671635 countsByYear W32036716352021 @default.
- W3203671635 countsByYear W32036716352022 @default.