Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203704239> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3203704239 endingPage "110240" @default.
- W3203704239 startingPage "110240" @default.
- W3203704239 abstract "Fastener needs to be detected periodically to maintain the railway safety. However, the detection performance of the existing methods is insufficient in the case of imbalanced fastener samples. To tackle this problem, a hierarchical learning approach which consists of fastener localization and fastener detection is proposed in this paper. Firstly, a multi-scale features-based deep detection network (MSF-DDN) is proposed to locate the fastener regions from railway images. Then, a region classification network is constructed to recognize the type of key sub-regions obtained from the located fastener region images. Finally, fastener detection is achieved by analyzing the recognition results of key sub-regions through the constructed decision tree. A large number of experiments are conducted on the collected real railway images. The experimental results indicate that the hierarchical learning approach achieves an average precision of 96.4% and recall of 96.3% on the detection of imbalanced fasteners, which outperforms state-of-the-art methods." @default.
- W3203704239 created "2021-10-11" @default.
- W3203704239 creator A5010000548 @default.
- W3203704239 creator A5015086222 @default.
- W3203704239 creator A5041588764 @default.
- W3203704239 creator A5048149401 @default.
- W3203704239 creator A5052193737 @default.
- W3203704239 creator A5066586426 @default.
- W3203704239 creator A5082281897 @default.
- W3203704239 date "2021-12-01" @default.
- W3203704239 modified "2023-09-27" @default.
- W3203704239 title "A hierarchical learning approach for railway fastener detection using imbalanced samples" @default.
- W3203704239 cites W2004077185 @default.
- W3203704239 cites W2040483045 @default.
- W3203704239 cites W2080829704 @default.
- W3203704239 cites W2166227789 @default.
- W3203704239 cites W2406523001 @default.
- W3203704239 cites W2536279238 @default.
- W3203704239 cites W2790914279 @default.
- W3203704239 cites W2800895582 @default.
- W3203704239 cites W2912130719 @default.
- W3203704239 cites W2941071846 @default.
- W3203704239 cites W2945463874 @default.
- W3203704239 cites W2955597079 @default.
- W3203704239 cites W3014107482 @default.
- W3203704239 cites W3092600573 @default.
- W3203704239 cites W3133820175 @default.
- W3203704239 cites W3178139507 @default.
- W3203704239 cites W639708223 @default.
- W3203704239 doi "https://doi.org/10.1016/j.measurement.2021.110240" @default.
- W3203704239 hasPublicationYear "2021" @default.
- W3203704239 type Work @default.
- W3203704239 sameAs 3203704239 @default.
- W3203704239 citedByCount "4" @default.
- W3203704239 countsByYear W32037042392022 @default.
- W3203704239 countsByYear W32037042392023 @default.
- W3203704239 crossrefType "journal-article" @default.
- W3203704239 hasAuthorship W3203704239A5010000548 @default.
- W3203704239 hasAuthorship W3203704239A5015086222 @default.
- W3203704239 hasAuthorship W3203704239A5041588764 @default.
- W3203704239 hasAuthorship W3203704239A5048149401 @default.
- W3203704239 hasAuthorship W3203704239A5052193737 @default.
- W3203704239 hasAuthorship W3203704239A5066586426 @default.
- W3203704239 hasAuthorship W3203704239A5082281897 @default.
- W3203704239 hasConcept C119857082 @default.
- W3203704239 hasConcept C127413603 @default.
- W3203704239 hasConcept C153180895 @default.
- W3203704239 hasConcept C154945302 @default.
- W3203704239 hasConcept C26517878 @default.
- W3203704239 hasConcept C2778240408 @default.
- W3203704239 hasConcept C38652104 @default.
- W3203704239 hasConcept C41008148 @default.
- W3203704239 hasConcept C66938386 @default.
- W3203704239 hasConcept C84525736 @default.
- W3203704239 hasConceptScore W3203704239C119857082 @default.
- W3203704239 hasConceptScore W3203704239C127413603 @default.
- W3203704239 hasConceptScore W3203704239C153180895 @default.
- W3203704239 hasConceptScore W3203704239C154945302 @default.
- W3203704239 hasConceptScore W3203704239C26517878 @default.
- W3203704239 hasConceptScore W3203704239C2778240408 @default.
- W3203704239 hasConceptScore W3203704239C38652104 @default.
- W3203704239 hasConceptScore W3203704239C41008148 @default.
- W3203704239 hasConceptScore W3203704239C66938386 @default.
- W3203704239 hasConceptScore W3203704239C84525736 @default.
- W3203704239 hasFunder F4320321001 @default.
- W3203704239 hasLocation W32037042391 @default.
- W3203704239 hasOpenAccess W3203704239 @default.
- W3203704239 hasPrimaryLocation W32037042391 @default.
- W3203704239 hasRelatedWork W1470425429 @default.
- W3203704239 hasRelatedWork W3127425528 @default.
- W3203704239 hasRelatedWork W3185179407 @default.
- W3203704239 hasRelatedWork W4205478082 @default.
- W3203704239 hasRelatedWork W4281385048 @default.
- W3203704239 hasRelatedWork W4308191010 @default.
- W3203704239 hasRelatedWork W4313001487 @default.
- W3203704239 hasRelatedWork W4318350883 @default.
- W3203704239 hasRelatedWork W4328134586 @default.
- W3203704239 hasRelatedWork W4361795583 @default.
- W3203704239 hasVolume "186" @default.
- W3203704239 isParatext "false" @default.
- W3203704239 isRetracted "false" @default.
- W3203704239 magId "3203704239" @default.
- W3203704239 workType "article" @default.