Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203708484> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3203708484 endingPage "106445" @default.
- W3203708484 startingPage "106445" @default.
- W3203708484 abstract "Advancement of the ultra-fast microscopic images acquisition and generation techniques give rise to the automated artificial intelligence (AI)-based microscopic images classification systems. The earlier cell classification systems classify the cell images of a specific type captured using a specific microscopy technique, therefore the motivation behind the present study is to develop a generic framework that can be used for the classification of cell images of multiple types captured using a variety of microscopic techniques.The proposed framework for microscopic cell images classification is based on the transfer learning-based multi-level ensemble approach. The ensemble is made by training the same base model with different optimisation methods and different learning rates. An important contribution of the proposed framework lies in its ability to capture different granularities of features extracted from multiple scales of an input microscopic cell image. The base learners used in the proposed ensemble encapsulates the aggregation of low-level coarse features and high-level semantic features, thus, represent the different granular microscopic cell image features present at different scales of input cell images. The batch normalisation layer has been added to the base models for the fast convergence in the proposed ensemble for microscopic cell images classification.The general applicability of the proposed framework for microscopic cell image classification has been tested with five different public datasets. The proposed method has outperformed the experimental results obtained in several other similar works.The proposed framework for microscopic cell classification outperforms the other state-of-the-art classification methods in the same domain with a comparatively lesser amount of training data." @default.
- W3203708484 created "2021-10-11" @default.
- W3203708484 creator A5038343229 @default.
- W3203708484 creator A5041792021 @default.
- W3203708484 creator A5060527502 @default.
- W3203708484 date "2021-11-01" @default.
- W3203708484 modified "2023-10-14" @default.
- W3203708484 title "Deep learning based microscopic cell images classification framework using multi-level ensemble" @default.
- W3203708484 cites W2046180129 @default.
- W3203708484 cites W2059272842 @default.
- W3203708484 cites W2095539364 @default.
- W3203708484 cites W2112385576 @default.
- W3203708484 cites W2120764346 @default.
- W3203708484 cites W2145752049 @default.
- W3203708484 cites W2158275940 @default.
- W3203708484 cites W2256207883 @default.
- W3203708484 cites W2412455056 @default.
- W3203708484 cites W2548144048 @default.
- W3203708484 cites W2554170757 @default.
- W3203708484 cites W2751625431 @default.
- W3203708484 cites W2800128458 @default.
- W3203708484 cites W2803317672 @default.
- W3203708484 cites W2803857835 @default.
- W3203708484 cites W2899181753 @default.
- W3203708484 cites W2914071839 @default.
- W3203708484 cites W2921488690 @default.
- W3203708484 cites W2938286185 @default.
- W3203708484 cites W2947104118 @default.
- W3203708484 cites W2965150010 @default.
- W3203708484 cites W2969546126 @default.
- W3203708484 cites W3013844559 @default.
- W3203708484 cites W3018852185 @default.
- W3203708484 cites W3023485588 @default.
- W3203708484 cites W3024740627 @default.
- W3203708484 cites W3034970121 @default.
- W3203708484 cites W3042585059 @default.
- W3203708484 doi "https://doi.org/10.1016/j.cmpb.2021.106445" @default.
- W3203708484 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34627021" @default.
- W3203708484 hasPublicationYear "2021" @default.
- W3203708484 type Work @default.
- W3203708484 sameAs 3203708484 @default.
- W3203708484 citedByCount "3" @default.
- W3203708484 countsByYear W32037084842023 @default.
- W3203708484 crossrefType "journal-article" @default.
- W3203708484 hasAuthorship W3203708484A5038343229 @default.
- W3203708484 hasAuthorship W3203708484A5041792021 @default.
- W3203708484 hasAuthorship W3203708484A5060527502 @default.
- W3203708484 hasConcept C115961682 @default.
- W3203708484 hasConcept C119857082 @default.
- W3203708484 hasConcept C150899416 @default.
- W3203708484 hasConcept C153180895 @default.
- W3203708484 hasConcept C154945302 @default.
- W3203708484 hasConcept C41008148 @default.
- W3203708484 hasConcept C45942800 @default.
- W3203708484 hasConcept C75294576 @default.
- W3203708484 hasConceptScore W3203708484C115961682 @default.
- W3203708484 hasConceptScore W3203708484C119857082 @default.
- W3203708484 hasConceptScore W3203708484C150899416 @default.
- W3203708484 hasConceptScore W3203708484C153180895 @default.
- W3203708484 hasConceptScore W3203708484C154945302 @default.
- W3203708484 hasConceptScore W3203708484C41008148 @default.
- W3203708484 hasConceptScore W3203708484C45942800 @default.
- W3203708484 hasConceptScore W3203708484C75294576 @default.
- W3203708484 hasLocation W32037084841 @default.
- W3203708484 hasLocation W32037084842 @default.
- W3203708484 hasOpenAccess W3203708484 @default.
- W3203708484 hasPrimaryLocation W32037084841 @default.
- W3203708484 hasRelatedWork W1191482210 @default.
- W3203708484 hasRelatedWork W2806625726 @default.
- W3203708484 hasRelatedWork W2900445707 @default.
- W3203708484 hasRelatedWork W4210302090 @default.
- W3203708484 hasRelatedWork W4285046548 @default.
- W3203708484 hasRelatedWork W4285741730 @default.
- W3203708484 hasRelatedWork W4324137541 @default.
- W3203708484 hasRelatedWork W4376643315 @default.
- W3203708484 hasRelatedWork W4384700341 @default.
- W3203708484 hasRelatedWork W4385398839 @default.
- W3203708484 hasVolume "211" @default.
- W3203708484 isParatext "false" @default.
- W3203708484 isRetracted "false" @default.
- W3203708484 magId "3203708484" @default.
- W3203708484 workType "article" @default.