Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203713416> ?p ?o ?g. }
- W3203713416 endingPage "9080" @default.
- W3203713416 startingPage "9080" @default.
- W3203713416 abstract "The world has witnessed recently a global outbreak of coronavirus disease (COVID-19). This pandemic has affected many countries and has resulted in worldwide health concerns, thus governments are attempting to reduce its spread and impact on different aspects of life such as health, economics, education, and politics by making emergent decisions and policies (e.g., lockdown and social distancing). These new regulations influenced people’s daily life and cast significant burdens, concerns, and disparities on various population groups. Taking the wrong actions and enforcing bad decisions by some countries result in increasing the contagion rate and more catastrophic results. People start to post their opinions and feelings about their government’s decisions on different social media networks, and the data received through these platforms present a very useful source of information that affects how governments perceive and cope with the current the pandemic. Jordan was one of the top affected countries. In this paper, we proposed a decision support system based on the sentiment analysis mechanism by combining support vector machines with a whale optimization algorithm for automatically tuning the hyperparameters and performing feature weighting. The work is based on a hybrid evolutionary approach that aims to perform sentiment analysis combined with a decision support system to study people’s posts on Facebook to investigate their attitudes and feelings toward the government’s decisions during the pandemic. The government regulations were divided into two periods: the first and latter regulations. Studying public sentiments during these periods allows decision-makers in the government to sense people’s feelings, alert them in case of possible threats, and help in making proactive actions if needed to better handle the current pandemic situation. Five different versions were generated for each of the two collected datasets. The results demonstrate the superiority of the proposed Whale Optimization Algorithm & Support Vector Machines (WOA-SVM) against other metaheuristic algorithms and standard classification models as WOA-SVM has achieved 78.78% in terms of accuracy and 84.64% in term of f-measure, while other standard classification models such as NB, k-NN, J84, and SVM achieved an accuracy of 69.25%, 69.78%, 70.17%, and 69.29%, respectively, with 64.15%, 62.90%, 60.51%, and 59.09% F-measure. Moreover, when comparing our proposed WOA-SVM approach with other metaheuristic algorithms, which are GA-SVM, PSO-SVM, and MVO-SVM, WOA-SVM proved to outperform the other approaches with results of 78.78% in terms of accuracy and 84.64% in terms of F-measure. Further, we investigate and analyze the most relevant features and their effect to improve the decision support system of government decisions." @default.
- W3203713416 created "2021-10-11" @default.
- W3203713416 creator A5001603131 @default.
- W3203713416 creator A5019666589 @default.
- W3203713416 creator A5042798851 @default.
- W3203713416 creator A5044414661 @default.
- W3203713416 creator A5070324153 @default.
- W3203713416 date "2021-09-29" @default.
- W3203713416 modified "2023-10-01" @default.
- W3203713416 title "An Evolutionary-Based Sentiment Analysis Approach for Enhancing Government Decisions during COVID-19 Pandemic: The Case of Jordan" @default.
- W3203713416 cites W2290883490 @default.
- W3203713416 cites W2730265215 @default.
- W3203713416 cites W2794783301 @default.
- W3203713416 cites W2884982909 @default.
- W3203713416 cites W2891516347 @default.
- W3203713416 cites W2902016849 @default.
- W3203713416 cites W2930018783 @default.
- W3203713416 cites W2964586220 @default.
- W3203713416 cites W2969322340 @default.
- W3203713416 cites W2980970477 @default.
- W3203713416 cites W2994973178 @default.
- W3203713416 cites W3013476223 @default.
- W3203713416 cites W3021895194 @default.
- W3203713416 cites W3024150663 @default.
- W3203713416 cites W3024249300 @default.
- W3203713416 cites W3024743749 @default.
- W3203713416 cites W3037537057 @default.
- W3203713416 cites W3044170306 @default.
- W3203713416 cites W3088352144 @default.
- W3203713416 cites W3088761395 @default.
- W3203713416 cites W3089669567 @default.
- W3203713416 cites W3093674982 @default.
- W3203713416 cites W3094733139 @default.
- W3203713416 cites W3097707184 @default.
- W3203713416 cites W3105951585 @default.
- W3203713416 cites W3117290666 @default.
- W3203713416 cites W3120254517 @default.
- W3203713416 cites W3120257183 @default.
- W3203713416 cites W3120849201 @default.
- W3203713416 cites W3120939265 @default.
- W3203713416 cites W3128585438 @default.
- W3203713416 cites W3130057838 @default.
- W3203713416 cites W3131387325 @default.
- W3203713416 cites W3139520710 @default.
- W3203713416 cites W3149086027 @default.
- W3203713416 cites W3151310069 @default.
- W3203713416 cites W3153767645 @default.
- W3203713416 cites W3155839992 @default.
- W3203713416 cites W3156187258 @default.
- W3203713416 cites W3158729335 @default.
- W3203713416 cites W3162132160 @default.
- W3203713416 cites W3166931362 @default.
- W3203713416 cites W3173180842 @default.
- W3203713416 cites W3186568986 @default.
- W3203713416 cites W4239510810 @default.
- W3203713416 doi "https://doi.org/10.3390/app11199080" @default.
- W3203713416 hasPublicationYear "2021" @default.
- W3203713416 type Work @default.
- W3203713416 sameAs 3203713416 @default.
- W3203713416 citedByCount "11" @default.
- W3203713416 countsByYear W32037134162021 @default.
- W3203713416 countsByYear W32037134162022 @default.
- W3203713416 countsByYear W32037134162023 @default.
- W3203713416 crossrefType "journal-article" @default.
- W3203713416 hasAuthorship W3203713416A5001603131 @default.
- W3203713416 hasAuthorship W3203713416A5019666589 @default.
- W3203713416 hasAuthorship W3203713416A5042798851 @default.
- W3203713416 hasAuthorship W3203713416A5044414661 @default.
- W3203713416 hasAuthorship W3203713416A5070324153 @default.
- W3203713416 hasBestOaLocation W32037134161 @default.
- W3203713416 hasConcept C122980154 @default.
- W3203713416 hasConcept C138885662 @default.
- W3203713416 hasConcept C142724271 @default.
- W3203713416 hasConcept C144133560 @default.
- W3203713416 hasConcept C154945302 @default.
- W3203713416 hasConcept C15744967 @default.
- W3203713416 hasConcept C172656115 @default.
- W3203713416 hasConcept C17744445 @default.
- W3203713416 hasConcept C2778137410 @default.
- W3203713416 hasConcept C2779134260 @default.
- W3203713416 hasConcept C2908647359 @default.
- W3203713416 hasConcept C3008058167 @default.
- W3203713416 hasConcept C39549134 @default.
- W3203713416 hasConcept C41008148 @default.
- W3203713416 hasConcept C41895202 @default.
- W3203713416 hasConcept C524204448 @default.
- W3203713416 hasConcept C66402592 @default.
- W3203713416 hasConcept C71924100 @default.
- W3203713416 hasConcept C77805123 @default.
- W3203713416 hasConcept C89623803 @default.
- W3203713416 hasConcept C99454951 @default.
- W3203713416 hasConceptScore W3203713416C122980154 @default.
- W3203713416 hasConceptScore W3203713416C138885662 @default.
- W3203713416 hasConceptScore W3203713416C142724271 @default.
- W3203713416 hasConceptScore W3203713416C144133560 @default.
- W3203713416 hasConceptScore W3203713416C154945302 @default.
- W3203713416 hasConceptScore W3203713416C15744967 @default.
- W3203713416 hasConceptScore W3203713416C172656115 @default.