Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203725208> ?p ?o ?g. }
- W3203725208 endingPage "107725" @default.
- W3203725208 startingPage "107725" @default.
- W3203725208 abstract "• A novel grey seasonal model is proposed. • The cycle accumulation generation operator is put forward in this paper. • The new model is used to predict two energy consumption series. • Empirical results express the superiority of this new method over other competitors. For time series forecasting, the mobile holiday effect typically brings certain difficulty in obtaining accurate forecasts for monthly and quarterly series since it can result in enormous disturbances for modeling, especially for the sequences with limited information and much uncertainty. This study proposes a discrete grey seasonal model by cycle accumulation generation as an alternative approach to seasonal time series forecasting to effectively address such issues. Moreover, the logarithmic transformation technique is introduced to enhance the forecasting performance of this proposed approach, which can significantly reduce the errors resulted from the cycle accumulation generation restoration. To validate the effectiveness and practicality of the proposed model, a range of competing models, including the DGSM(1,1) , SFGM(1,1) , SGM(1,1) , SARIMA, BP neural network, LSSVM , RBF , and LSTM models, are employed to conduct experimental comparisons. Empirical evidence from the monthly industrial electricity and quarterly natural gas consumptions show that the newly designed approach is superior to other competitors in terms of level accuracy and performance stability with the support of the logarithmic transformation technique. Further, the robustness test over the performance of the logarithmic transformation and cycle accumulation generation techniques has been implemented. Results demonstrate that the proposed approach with the logarithmic transformation technique's support can be considered a promising tool to weaken the mobile holiday’ disturbance and improve the forecasting accuracy. Therefore, based on the accurate predictions, the power supply department is able to prepare the power supply plans in advance, reducing the negative effects of the holiday effect on energy management." @default.
- W3203725208 created "2021-10-11" @default.
- W3203725208 creator A5010418673 @default.
- W3203725208 creator A5037989560 @default.
- W3203725208 creator A5045667274 @default.
- W3203725208 creator A5047391238 @default.
- W3203725208 creator A5054764572 @default.
- W3203725208 creator A5088236520 @default.
- W3203725208 date "2022-01-01" @default.
- W3203725208 modified "2023-09-27" @default.
- W3203725208 title "A novel grey seasonal model based on cycle accumulation generation for forecasting energy consumption in China" @default.
- W3203725208 cites W1124582155 @default.
- W3203725208 cites W1495593618 @default.
- W3203725208 cites W1965586820 @default.
- W3203725208 cites W1967021899 @default.
- W3203725208 cites W1991667190 @default.
- W3203725208 cites W2013377700 @default.
- W3203725208 cites W2068438324 @default.
- W3203725208 cites W2070166848 @default.
- W3203725208 cites W2089320241 @default.
- W3203725208 cites W2093199908 @default.
- W3203725208 cites W2124324594 @default.
- W3203725208 cites W2302904916 @default.
- W3203725208 cites W2341043803 @default.
- W3203725208 cites W2588496534 @default.
- W3203725208 cites W2612624016 @default.
- W3203725208 cites W2623776817 @default.
- W3203725208 cites W2727360691 @default.
- W3203725208 cites W2732267215 @default.
- W3203725208 cites W2750292148 @default.
- W3203725208 cites W2774610454 @default.
- W3203725208 cites W2794726811 @default.
- W3203725208 cites W2803099549 @default.
- W3203725208 cites W2885046688 @default.
- W3203725208 cites W2900932353 @default.
- W3203725208 cites W2947852250 @default.
- W3203725208 cites W2982236294 @default.
- W3203725208 cites W2998944925 @default.
- W3203725208 cites W3046160224 @default.
- W3203725208 cites W3047173614 @default.
- W3203725208 cites W3049406726 @default.
- W3203725208 cites W3110478278 @default.
- W3203725208 cites W3117626986 @default.
- W3203725208 cites W3119720317 @default.
- W3203725208 cites W3126173289 @default.
- W3203725208 cites W3150925156 @default.
- W3203725208 cites W3168821323 @default.
- W3203725208 doi "https://doi.org/10.1016/j.cie.2021.107725" @default.
- W3203725208 hasPublicationYear "2022" @default.
- W3203725208 type Work @default.
- W3203725208 sameAs 3203725208 @default.
- W3203725208 citedByCount "13" @default.
- W3203725208 countsByYear W32037252082022 @default.
- W3203725208 countsByYear W32037252082023 @default.
- W3203725208 crossrefType "journal-article" @default.
- W3203725208 hasAuthorship W3203725208A5010418673 @default.
- W3203725208 hasAuthorship W3203725208A5037989560 @default.
- W3203725208 hasAuthorship W3203725208A5045667274 @default.
- W3203725208 hasAuthorship W3203725208A5047391238 @default.
- W3203725208 hasAuthorship W3203725208A5054764572 @default.
- W3203725208 hasAuthorship W3203725208A5088236520 @default.
- W3203725208 hasConcept C104317684 @default.
- W3203725208 hasConcept C112972136 @default.
- W3203725208 hasConcept C119857082 @default.
- W3203725208 hasConcept C127413603 @default.
- W3203725208 hasConcept C127576917 @default.
- W3203725208 hasConcept C134306372 @default.
- W3203725208 hasConcept C146978453 @default.
- W3203725208 hasConcept C149782125 @default.
- W3203725208 hasConcept C151406439 @default.
- W3203725208 hasConcept C154945302 @default.
- W3203725208 hasConcept C162324750 @default.
- W3203725208 hasConcept C185592680 @default.
- W3203725208 hasConcept C187736073 @default.
- W3203725208 hasConcept C204241405 @default.
- W3203725208 hasConcept C204323151 @default.
- W3203725208 hasConcept C33923547 @default.
- W3203725208 hasConcept C39927690 @default.
- W3203725208 hasConcept C41008148 @default.
- W3203725208 hasConcept C50644808 @default.
- W3203725208 hasConcept C55493867 @default.
- W3203725208 hasConcept C63479239 @default.
- W3203725208 hasConceptScore W3203725208C104317684 @default.
- W3203725208 hasConceptScore W3203725208C112972136 @default.
- W3203725208 hasConceptScore W3203725208C119857082 @default.
- W3203725208 hasConceptScore W3203725208C127413603 @default.
- W3203725208 hasConceptScore W3203725208C127576917 @default.
- W3203725208 hasConceptScore W3203725208C134306372 @default.
- W3203725208 hasConceptScore W3203725208C146978453 @default.
- W3203725208 hasConceptScore W3203725208C149782125 @default.
- W3203725208 hasConceptScore W3203725208C151406439 @default.
- W3203725208 hasConceptScore W3203725208C154945302 @default.
- W3203725208 hasConceptScore W3203725208C162324750 @default.
- W3203725208 hasConceptScore W3203725208C185592680 @default.
- W3203725208 hasConceptScore W3203725208C187736073 @default.
- W3203725208 hasConceptScore W3203725208C204241405 @default.
- W3203725208 hasConceptScore W3203725208C204323151 @default.
- W3203725208 hasConceptScore W3203725208C33923547 @default.