Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203730897> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3203730897 endingPage "1429" @default.
- W3203730897 startingPage "1424" @default.
- W3203730897 abstract "Abstract With vast interest in machine learning applications, more investigators are proposing to assemble large datasets for machine learning applications. We aim to delineate multiple possible roadblocks to exam retrieval that may present themselves and lead to significant time delays. This HIPAA-compliant, institutional review board–approved, retrospective clinical study required identification and retrieval of all outpatient and emergency patients undergoing abdominal and pelvic computed tomography (CT) at three affiliated hospitals in the year 2012. If a patient had multiple abdominal CT exams, the first exam was selected for retrieval ( n =23,186). Our experience in attempting to retrieve 23,186 abdominal CT exams yielded 22,852 valid CT abdomen/pelvis exams and identified four major categories of challenges when retrieving large datasets: cohort selection and processing, retrieving DICOM exam files from PACS, data storage, and non-recoverable failures. The retrieval took 3 months of project time and at minimum 300 person-hours of time between the primary investigator (a radiologist), a data scientist, and a software engineer. Exam selection and retrieval may take significantly longer than planned. We share our experience so that other investigators can anticipate and plan for these challenges. We also hope to help institutions better understand the demands that may be placed on their infrastructure by large-scale medical imaging machine learning projects." @default.
- W3203730897 created "2021-10-11" @default.
- W3203730897 creator A5031717380 @default.
- W3203730897 creator A5066782057 @default.
- W3203730897 creator A5079669314 @default.
- W3203730897 creator A5089624408 @default.
- W3203730897 date "2021-10-04" @default.
- W3203730897 modified "2023-10-16" @default.
- W3203730897 title "The Trials and Tribulations of Assembling Large Medical Imaging Datasets for Machine Learning Applications" @default.
- W3203730897 cites W2028138594 @default.
- W3203730897 cites W2900243258 @default.
- W3203730897 cites W2913223168 @default.
- W3203730897 cites W2914203365 @default.
- W3203730897 cites W2919356958 @default.
- W3203730897 cites W2939071985 @default.
- W3203730897 cites W3007935259 @default.
- W3203730897 cites W3023284086 @default.
- W3203730897 cites W3088943327 @default.
- W3203730897 cites W3089653673 @default.
- W3203730897 doi "https://doi.org/10.1007/s10278-021-00505-7" @default.
- W3203730897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34608591" @default.
- W3203730897 hasPublicationYear "2021" @default.
- W3203730897 type Work @default.
- W3203730897 sameAs 3203730897 @default.
- W3203730897 citedByCount "9" @default.
- W3203730897 countsByYear W32037308972022 @default.
- W3203730897 countsByYear W32037308972023 @default.
- W3203730897 crossrefType "journal-article" @default.
- W3203730897 hasAuthorship W3203730897A5031717380 @default.
- W3203730897 hasAuthorship W3203730897A5066782057 @default.
- W3203730897 hasAuthorship W3203730897A5079669314 @default.
- W3203730897 hasAuthorship W3203730897A5089624408 @default.
- W3203730897 hasBestOaLocation W32037308971 @default.
- W3203730897 hasConcept C119857082 @default.
- W3203730897 hasConcept C126838900 @default.
- W3203730897 hasConcept C141071460 @default.
- W3203730897 hasConcept C154945302 @default.
- W3203730897 hasConcept C166957645 @default.
- W3203730897 hasConcept C19527891 @default.
- W3203730897 hasConcept C23123220 @default.
- W3203730897 hasConcept C2776505523 @default.
- W3203730897 hasConcept C2777106319 @default.
- W3203730897 hasConcept C41008148 @default.
- W3203730897 hasConcept C71924100 @default.
- W3203730897 hasConcept C77331912 @default.
- W3203730897 hasConcept C95457728 @default.
- W3203730897 hasConceptScore W3203730897C119857082 @default.
- W3203730897 hasConceptScore W3203730897C126838900 @default.
- W3203730897 hasConceptScore W3203730897C141071460 @default.
- W3203730897 hasConceptScore W3203730897C154945302 @default.
- W3203730897 hasConceptScore W3203730897C166957645 @default.
- W3203730897 hasConceptScore W3203730897C19527891 @default.
- W3203730897 hasConceptScore W3203730897C23123220 @default.
- W3203730897 hasConceptScore W3203730897C2776505523 @default.
- W3203730897 hasConceptScore W3203730897C2777106319 @default.
- W3203730897 hasConceptScore W3203730897C41008148 @default.
- W3203730897 hasConceptScore W3203730897C71924100 @default.
- W3203730897 hasConceptScore W3203730897C77331912 @default.
- W3203730897 hasConceptScore W3203730897C95457728 @default.
- W3203730897 hasIssue "6" @default.
- W3203730897 hasLocation W32037308971 @default.
- W3203730897 hasLocation W32037308972 @default.
- W3203730897 hasLocation W32037308973 @default.
- W3203730897 hasOpenAccess W3203730897 @default.
- W3203730897 hasPrimaryLocation W32037308971 @default.
- W3203730897 hasRelatedWork W2035078636 @default.
- W3203730897 hasRelatedWork W2155887765 @default.
- W3203730897 hasRelatedWork W2376314740 @default.
- W3203730897 hasRelatedWork W2384888906 @default.
- W3203730897 hasRelatedWork W2748952813 @default.
- W3203730897 hasRelatedWork W2897240849 @default.
- W3203730897 hasRelatedWork W2899084033 @default.
- W3203730897 hasRelatedWork W2961085424 @default.
- W3203730897 hasRelatedWork W4306674287 @default.
- W3203730897 hasRelatedWork W4224009465 @default.
- W3203730897 hasVolume "34" @default.
- W3203730897 isParatext "false" @default.
- W3203730897 isRetracted "false" @default.
- W3203730897 magId "3203730897" @default.
- W3203730897 workType "article" @default.