Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203740711> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3203740711 endingPage "405" @default.
- W3203740711 startingPage "391" @default.
- W3203740711 abstract "In this fast-growing world of 21st century Machine Learning (ML) is one of the most powerful tools for solving a variety of real-life problems. Machine Learning helps both normal as well as differently-abled people. Facial Expression Recognition (FER) system can be widely used in different variety of research areas, such as diagnosis of mental disease and human physiological interaction detection. Machine Learning can automate processes by learning from different datasets. ML is commonly used for tasks like prediction, detection, regression and classification. The core idea of ML is to learn from previous and produce results accordingly. This result may be the output of new input or predictions based on past actions. With this, Deep Learning a subset of ML made possible to learn human facial expression from an image dataset and identify the facial expression performed in real life. The advancement in facial recognition systems helps in the purpose of diagnosis and also market feedback. But, due to various complexities and noise factors in facial expression images, there is still a need for improvement in this field. With different technological advancements in hardware and software, Facial Expression Recognition systems have been developed to help and support real-world applications." @default.
- W3203740711 created "2021-10-11" @default.
- W3203740711 creator A5002716826 @default.
- W3203740711 creator A5021051196 @default.
- W3203740711 creator A5047645503 @default.
- W3203740711 creator A5053428215 @default.
- W3203740711 creator A5054458846 @default.
- W3203740711 creator A5060880594 @default.
- W3203740711 creator A5061763537 @default.
- W3203740711 date "2021-09-29" @default.
- W3203740711 modified "2023-10-17" @default.
- W3203740711 title "CNN Based Facial Expression Recognition System Using Deep Learning Approach" @default.
- W3203740711 cites W1943054406 @default.
- W3203740711 cites W1987372379 @default.
- W3203740711 cites W2082934049 @default.
- W3203740711 cites W2084553975 @default.
- W3203740711 cites W2097117768 @default.
- W3203740711 cites W2555928999 @default.
- W3203740711 cites W2623151925 @default.
- W3203740711 cites W2735606383 @default.
- W3203740711 cites W2810030407 @default.
- W3203740711 cites W2905858552 @default.
- W3203740711 cites W2973104987 @default.
- W3203740711 cites W3029830944 @default.
- W3203740711 cites W3043229327 @default.
- W3203740711 cites W3183730430 @default.
- W3203740711 cites W4234003228 @default.
- W3203740711 doi "https://doi.org/10.1007/978-981-16-4284-5_34" @default.
- W3203740711 hasPublicationYear "2021" @default.
- W3203740711 type Work @default.
- W3203740711 sameAs 3203740711 @default.
- W3203740711 citedByCount "1" @default.
- W3203740711 countsByYear W32037407112023 @default.
- W3203740711 crossrefType "book-chapter" @default.
- W3203740711 hasAuthorship W3203740711A5002716826 @default.
- W3203740711 hasAuthorship W3203740711A5021051196 @default.
- W3203740711 hasAuthorship W3203740711A5047645503 @default.
- W3203740711 hasAuthorship W3203740711A5053428215 @default.
- W3203740711 hasAuthorship W3203740711A5054458846 @default.
- W3203740711 hasAuthorship W3203740711A5060880594 @default.
- W3203740711 hasAuthorship W3203740711A5061763537 @default.
- W3203740711 hasConcept C108583219 @default.
- W3203740711 hasConcept C115961682 @default.
- W3203740711 hasConcept C119857082 @default.
- W3203740711 hasConcept C136197465 @default.
- W3203740711 hasConcept C153180895 @default.
- W3203740711 hasConcept C154945302 @default.
- W3203740711 hasConcept C195704467 @default.
- W3203740711 hasConcept C199360897 @default.
- W3203740711 hasConcept C202444582 @default.
- W3203740711 hasConcept C2987714656 @default.
- W3203740711 hasConcept C31510193 @default.
- W3203740711 hasConcept C33923547 @default.
- W3203740711 hasConcept C41008148 @default.
- W3203740711 hasConcept C90559484 @default.
- W3203740711 hasConcept C9652623 @default.
- W3203740711 hasConcept C99498987 @default.
- W3203740711 hasConceptScore W3203740711C108583219 @default.
- W3203740711 hasConceptScore W3203740711C115961682 @default.
- W3203740711 hasConceptScore W3203740711C119857082 @default.
- W3203740711 hasConceptScore W3203740711C136197465 @default.
- W3203740711 hasConceptScore W3203740711C153180895 @default.
- W3203740711 hasConceptScore W3203740711C154945302 @default.
- W3203740711 hasConceptScore W3203740711C195704467 @default.
- W3203740711 hasConceptScore W3203740711C199360897 @default.
- W3203740711 hasConceptScore W3203740711C202444582 @default.
- W3203740711 hasConceptScore W3203740711C2987714656 @default.
- W3203740711 hasConceptScore W3203740711C31510193 @default.
- W3203740711 hasConceptScore W3203740711C33923547 @default.
- W3203740711 hasConceptScore W3203740711C41008148 @default.
- W3203740711 hasConceptScore W3203740711C90559484 @default.
- W3203740711 hasConceptScore W3203740711C9652623 @default.
- W3203740711 hasConceptScore W3203740711C99498987 @default.
- W3203740711 hasLocation W32037407111 @default.
- W3203740711 hasOpenAccess W3203740711 @default.
- W3203740711 hasPrimaryLocation W32037407111 @default.
- W3203740711 hasRelatedWork W1591965711 @default.
- W3203740711 hasRelatedWork W1982770690 @default.
- W3203740711 hasRelatedWork W2503569529 @default.
- W3203740711 hasRelatedWork W2604307586 @default.
- W3203740711 hasRelatedWork W2733060750 @default.
- W3203740711 hasRelatedWork W3000095492 @default.
- W3203740711 hasRelatedWork W3018375584 @default.
- W3203740711 hasRelatedWork W4289860834 @default.
- W3203740711 hasRelatedWork W4312831135 @default.
- W3203740711 hasRelatedWork W3108696707 @default.
- W3203740711 isParatext "false" @default.
- W3203740711 isRetracted "false" @default.
- W3203740711 magId "3203740711" @default.
- W3203740711 workType "book-chapter" @default.