Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203794862> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3203794862 endingPage "5" @default.
- W3203794862 startingPage "1" @default.
- W3203794862 abstract "Surface nuclear magnetic resonance (NMR) measurements are notorious for their low signal-to-noise ratio (SNR). Powerlines are probably the most common source of noise and give the greatest contribution to noise levels. The noise from powerlines manifests itself as sinusoidal signals oscillating at the fundamental powerline frequency (50 or 60 Hz) and at integer multiples of this frequency. Modeling and subtraction of the powerline noise have been demonstrated as a highly applicable method for improving SNR and are common practice today. However, the methods used to determine the parameters of the powerline noise are computationally expensive. Consequently, it is difficult to do real-time noise removal during the acquisition of field data and, therefore, also difficult to do a real-time quality inspection of data. Here, we demonstrate how the removal of powerline noise in surface NMR data can be significantly faster. We obtain this through two new developments. First, we apply a projection-based method to determine the powerline model, which is twice as fast as the commonly applied least-squares solution of a matrix equation. Second, we obtain a further 10–25 times speed-up by exploiting the high-performance parallel computations offered by graphical processing units (GPUs). We demonstrate the method on a noise-only field dataset with an embedded synthetic NMR signal." @default.
- W3203794862 created "2021-10-11" @default.
- W3203794862 creator A5008874684 @default.
- W3203794862 creator A5027195402 @default.
- W3203794862 creator A5056145686 @default.
- W3203794862 creator A5076681344 @default.
- W3203794862 date "2022-01-01" @default.
- W3203794862 modified "2023-09-26" @default.
- W3203794862 title "Fast Removal of Powerline Harmonic Noise From Surface NMR Datasets Using a Projection-Based Approach on Graphical Processing Units" @default.
- W3203794862 cites W1580654971 @default.
- W3203794862 cites W2038145696 @default.
- W3203794862 cites W2040807781 @default.
- W3203794862 cites W2100819670 @default.
- W3203794862 cites W2103148459 @default.
- W3203794862 cites W2402913429 @default.
- W3203794862 cites W2507145023 @default.
- W3203794862 cites W2770775795 @default.
- W3203794862 cites W2891037515 @default.
- W3203794862 cites W2913452206 @default.
- W3203794862 cites W2959229639 @default.
- W3203794862 cites W2994659009 @default.
- W3203794862 doi "https://doi.org/10.1109/lgrs.2021.3118064" @default.
- W3203794862 hasPublicationYear "2022" @default.
- W3203794862 type Work @default.
- W3203794862 sameAs 3203794862 @default.
- W3203794862 citedByCount "2" @default.
- W3203794862 countsByYear W32037948622022 @default.
- W3203794862 crossrefType "journal-article" @default.
- W3203794862 hasAuthorship W3203794862A5008874684 @default.
- W3203794862 hasAuthorship W3203794862A5027195402 @default.
- W3203794862 hasAuthorship W3203794862A5056145686 @default.
- W3203794862 hasAuthorship W3203794862A5076681344 @default.
- W3203794862 hasConcept C104267543 @default.
- W3203794862 hasConcept C11413529 @default.
- W3203794862 hasConcept C115961682 @default.
- W3203794862 hasConcept C127413603 @default.
- W3203794862 hasConcept C13944312 @default.
- W3203794862 hasConcept C154945302 @default.
- W3203794862 hasConcept C163294075 @default.
- W3203794862 hasConcept C202444582 @default.
- W3203794862 hasConcept C24326235 @default.
- W3203794862 hasConcept C29265498 @default.
- W3203794862 hasConcept C33923547 @default.
- W3203794862 hasConcept C41008148 @default.
- W3203794862 hasConcept C45374587 @default.
- W3203794862 hasConcept C554190296 @default.
- W3203794862 hasConcept C57493831 @default.
- W3203794862 hasConcept C76155785 @default.
- W3203794862 hasConcept C9652623 @default.
- W3203794862 hasConcept C99498987 @default.
- W3203794862 hasConceptScore W3203794862C104267543 @default.
- W3203794862 hasConceptScore W3203794862C11413529 @default.
- W3203794862 hasConceptScore W3203794862C115961682 @default.
- W3203794862 hasConceptScore W3203794862C127413603 @default.
- W3203794862 hasConceptScore W3203794862C13944312 @default.
- W3203794862 hasConceptScore W3203794862C154945302 @default.
- W3203794862 hasConceptScore W3203794862C163294075 @default.
- W3203794862 hasConceptScore W3203794862C202444582 @default.
- W3203794862 hasConceptScore W3203794862C24326235 @default.
- W3203794862 hasConceptScore W3203794862C29265498 @default.
- W3203794862 hasConceptScore W3203794862C33923547 @default.
- W3203794862 hasConceptScore W3203794862C41008148 @default.
- W3203794862 hasConceptScore W3203794862C45374587 @default.
- W3203794862 hasConceptScore W3203794862C554190296 @default.
- W3203794862 hasConceptScore W3203794862C57493831 @default.
- W3203794862 hasConceptScore W3203794862C76155785 @default.
- W3203794862 hasConceptScore W3203794862C9652623 @default.
- W3203794862 hasConceptScore W3203794862C99498987 @default.
- W3203794862 hasFunder F4320310490 @default.
- W3203794862 hasFunder F4320322928 @default.
- W3203794862 hasLocation W32037948621 @default.
- W3203794862 hasOpenAccess W3203794862 @default.
- W3203794862 hasPrimaryLocation W32037948621 @default.
- W3203794862 hasRelatedWork W1588748369 @default.
- W3203794862 hasRelatedWork W1636554372 @default.
- W3203794862 hasRelatedWork W2003938842 @default.
- W3203794862 hasRelatedWork W2114109116 @default.
- W3203794862 hasRelatedWork W2116433293 @default.
- W3203794862 hasRelatedWork W2157275782 @default.
- W3203794862 hasRelatedWork W2426592751 @default.
- W3203794862 hasRelatedWork W3175870451 @default.
- W3203794862 hasRelatedWork W4210639382 @default.
- W3203794862 hasRelatedWork W4292454952 @default.
- W3203794862 hasVolume "19" @default.
- W3203794862 isParatext "false" @default.
- W3203794862 isRetracted "false" @default.
- W3203794862 magId "3203794862" @default.
- W3203794862 workType "article" @default.