Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203839072> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3203839072 endingPage "045030" @default.
- W3203839072 startingPage "045030" @default.
- W3203839072 abstract "Abstract Photoelastic techniques have a long tradition in both qualitative and quantitative analysis of the stresses in granular materials. Over the last two decades, computational methods for reconstructing forces between particles from their photoelastic response have been developed by many different experimental teams. Unfortunately, all of these methods are computationally expensive. This limits their use for processing extensive data sets that capture the time evolution of granular ensembles consisting of a large number of particles. In this paper, we present a novel approach to this problem that leverages the power of convolutional neural networks to recognize complex spatial patterns. The main drawback of using neural networks is that training them usually requires a large labeled data set which is hard to obtain experimentally. We show that this problem can be successfully circumvented by pretraining the networks on a large synthetic data set and then fine-tuning them on much smaller experimental data sets. Due to our current lack of experimental data, we demonstrate the potential of our method by changing the size of the considered particles which alters the exhibited photoelastic patterns more than typical experimental errors." @default.
- W3203839072 created "2021-10-11" @default.
- W3203839072 creator A5029573357 @default.
- W3203839072 creator A5087376780 @default.
- W3203839072 date "2021-10-25" @default.
- W3203839072 modified "2023-09-29" @default.
- W3203839072 title "Machine learning approach to force reconstruction in photoelastic materials" @default.
- W3203839072 cites W1581984155 @default.
- W3203839072 cites W1981524992 @default.
- W3203839072 cites W1986626126 @default.
- W3203839072 cites W1997479786 @default.
- W3203839072 cites W2037077328 @default.
- W3203839072 cites W2069446296 @default.
- W3203839072 cites W2077499723 @default.
- W3203839072 cites W2085152506 @default.
- W3203839072 cites W2091746061 @default.
- W3203839072 cites W2108388243 @default.
- W3203839072 cites W2165698076 @default.
- W3203839072 cites W2253429366 @default.
- W3203839072 cites W2326644229 @default.
- W3203839072 cites W2346062110 @default.
- W3203839072 cites W2608255245 @default.
- W3203839072 cites W2795407028 @default.
- W3203839072 cites W2803442705 @default.
- W3203839072 cites W2919115771 @default.
- W3203839072 cites W2972006294 @default.
- W3203839072 cites W3041133507 @default.
- W3203839072 cites W3100830107 @default.
- W3203839072 doi "https://doi.org/10.1088/2632-2153/ac29d5" @default.
- W3203839072 hasPublicationYear "2021" @default.
- W3203839072 type Work @default.
- W3203839072 sameAs 3203839072 @default.
- W3203839072 citedByCount "4" @default.
- W3203839072 countsByYear W32038390722022 @default.
- W3203839072 countsByYear W32038390722023 @default.
- W3203839072 crossrefType "journal-article" @default.
- W3203839072 hasAuthorship W3203839072A5029573357 @default.
- W3203839072 hasAuthorship W3203839072A5087376780 @default.
- W3203839072 hasBestOaLocation W32038390721 @default.
- W3203839072 hasConcept C105795698 @default.
- W3203839072 hasConcept C11413529 @default.
- W3203839072 hasConcept C154945302 @default.
- W3203839072 hasConcept C177264268 @default.
- W3203839072 hasConcept C199360897 @default.
- W3203839072 hasConcept C33923547 @default.
- W3203839072 hasConcept C41008148 @default.
- W3203839072 hasConcept C50644808 @default.
- W3203839072 hasConcept C55037315 @default.
- W3203839072 hasConcept C58489278 @default.
- W3203839072 hasConcept C81363708 @default.
- W3203839072 hasConceptScore W3203839072C105795698 @default.
- W3203839072 hasConceptScore W3203839072C11413529 @default.
- W3203839072 hasConceptScore W3203839072C154945302 @default.
- W3203839072 hasConceptScore W3203839072C177264268 @default.
- W3203839072 hasConceptScore W3203839072C199360897 @default.
- W3203839072 hasConceptScore W3203839072C33923547 @default.
- W3203839072 hasConceptScore W3203839072C41008148 @default.
- W3203839072 hasConceptScore W3203839072C50644808 @default.
- W3203839072 hasConceptScore W3203839072C55037315 @default.
- W3203839072 hasConceptScore W3203839072C58489278 @default.
- W3203839072 hasConceptScore W3203839072C81363708 @default.
- W3203839072 hasIssue "4" @default.
- W3203839072 hasLocation W32038390721 @default.
- W3203839072 hasLocation W32038390722 @default.
- W3203839072 hasOpenAccess W3203839072 @default.
- W3203839072 hasPrimaryLocation W32038390721 @default.
- W3203839072 hasRelatedWork W2117904580 @default.
- W3203839072 hasRelatedWork W2347880541 @default.
- W3203839072 hasRelatedWork W2898927529 @default.
- W3203839072 hasRelatedWork W2953116260 @default.
- W3203839072 hasRelatedWork W2980908687 @default.
- W3203839072 hasRelatedWork W3005704161 @default.
- W3203839072 hasRelatedWork W3082705149 @default.
- W3203839072 hasRelatedWork W3181746755 @default.
- W3203839072 hasRelatedWork W3189969450 @default.
- W3203839072 hasRelatedWork W4235907884 @default.
- W3203839072 hasVolume "2" @default.
- W3203839072 isParatext "false" @default.
- W3203839072 isRetracted "false" @default.
- W3203839072 magId "3203839072" @default.
- W3203839072 workType "article" @default.