Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203852345> ?p ?o ?g. }
- W3203852345 endingPage "28" @default.
- W3203852345 startingPage "11" @default.
- W3203852345 abstract "Deraining has been attracting a lot of attention from researchers, and various methods have been proposed, especially deep-networks are widely adopted in recent years. Their structures and learning become more and more complicated and diverse, making it difficult to analyze the contributions and improvements. In this paper, a comprehensive review for current rain removal methods is first provided to show their contributions. Specifically, they are reviewed in terms of handing rain streaks and rain mist. Second, besides evaluating their rain removal ability, they are also evaluated in terms of their impact on subsequent stereo-matching task. To this end, a new deraining dataset is first prepared, called Rain-Kitti2012 and Rain-Kitti2015. They are created by adding rain part to clean image-pairs in Kitti2012 and Kitti2015. By then, nine state-of-the-art deraining methods are evaluated with full-reference and no-reference image quality assessment metrics. Furthermore, the blurriness and distortion types introduced during deraining are measured. Finally, three learning-based stereo matching methods are compared, and they take the outputs of deraining methods as inputs. It is further discussed how derained images influence the accuracy of stereo matching, which can provide some insight for jointly handling rain removal and stereo matching. 1: A comprehensive review for the current rain removal methods is provided. They are categorized into rain-streak-oriented and rain-mist-oriented approaches in terms of degradation type, and are categorized into model-driven and data-driven approaches in terms of methodology. 2: A new image deraining dataset is introduced, which is the first dataset that can be used to perform stereo-matching-driven evaluation for deraining methods. The dataset is created by adding rain part to clean images in KITTI2012 and KITTI2015. 3: We evaluate 9 deep learning based deraining methods with full-reference and no- reference metrics. In addition, the types of distortions produced by these methods are discussed and measured quantitatively. And, the impact of 9 deraining methods on the subsequent stereo matching task is evaluated, which can provide some insight on how to design stereo matching task-driven deraining methods." @default.
- W3203852345 created "2021-10-11" @default.
- W3203852345 creator A5010696821 @default.
- W3203852345 creator A5011525006 @default.
- W3203852345 creator A5016739565 @default.
- W3203852345 creator A5045440266 @default.
- W3203852345 creator A5055901236 @default.
- W3203852345 creator A5069383800 @default.
- W3203852345 date "2021-09-28" @default.
- W3203852345 modified "2023-10-15" @default.
- W3203852345 title "A comprehensive survey: Image deraining and stereo‐matching task‐driven performance analysis" @default.
- W3203852345 cites W1572507715 @default.
- W3203852345 cites W1909316225 @default.
- W3203852345 cites W1964859077 @default.
- W3203852345 cites W1965572510 @default.
- W3203852345 cites W1970821875 @default.
- W3203852345 cites W1970863638 @default.
- W3203852345 cites W1986266272 @default.
- W3203852345 cites W1992687477 @default.
- W3203852345 cites W2015196405 @default.
- W3203852345 cites W2017416107 @default.
- W3203852345 cites W2046331708 @default.
- W3203852345 cites W2077946335 @default.
- W3203852345 cites W2113569611 @default.
- W3203852345 cites W2121396509 @default.
- W3203852345 cites W2122596619 @default.
- W3203852345 cites W2128254161 @default.
- W3203852345 cites W2154621477 @default.
- W3203852345 cites W2162692770 @default.
- W3203852345 cites W2163146621 @default.
- W3203852345 cites W2209874411 @default.
- W3203852345 cites W2466666260 @default.
- W3203852345 cites W2559264300 @default.
- W3203852345 cites W2617199345 @default.
- W3203852345 cites W2740982616 @default.
- W3203852345 cites W2753548330 @default.
- W3203852345 cites W2768340063 @default.
- W3203852345 cites W2777170053 @default.
- W3203852345 cites W2777241530 @default.
- W3203852345 cites W2778532031 @default.
- W3203852345 cites W2780930362 @default.
- W3203852345 cites W2789288870 @default.
- W3203852345 cites W2790883954 @default.
- W3203852345 cites W2791826073 @default.
- W3203852345 cites W2798401637 @default.
- W3203852345 cites W2798427787 @default.
- W3203852345 cites W2798744505 @default.
- W3203852345 cites W2884068670 @default.
- W3203852345 cites W2887181327 @default.
- W3203852345 cites W2891269274 @default.
- W3203852345 cites W2896911342 @default.
- W3203852345 cites W2910832120 @default.
- W3203852345 cites W2912435603 @default.
- W3203852345 cites W2930755307 @default.
- W3203852345 cites W2954171777 @default.
- W3203852345 cites W2963085671 @default.
- W3203852345 cites W2963152299 @default.
- W3203852345 cites W2963617879 @default.
- W3203852345 cites W2963619659 @default.
- W3203852345 cites W2963641969 @default.
- W3203852345 cites W2963686971 @default.
- W3203852345 cites W2963843230 @default.
- W3203852345 cites W2963866045 @default.
- W3203852345 cites W2963878020 @default.
- W3203852345 cites W2964116203 @default.
- W3203852345 cites W2964212750 @default.
- W3203852345 cites W2964267765 @default.
- W3203852345 cites W2964331331 @default.
- W3203852345 cites W2966083079 @default.
- W3203852345 cites W2970543065 @default.
- W3203852345 cites W2970842755 @default.
- W3203852345 cites W2986692528 @default.
- W3203852345 cites W2991350899 @default.
- W3203852345 cites W2992133484 @default.
- W3203852345 cites W3002421716 @default.
- W3203852345 cites W3003376178 @default.
- W3203852345 cites W3026432413 @default.
- W3203852345 cites W3034242291 @default.
- W3203852345 cites W3035250394 @default.
- W3203852345 cites W3035326127 @default.
- W3203852345 cites W3082706684 @default.
- W3203852345 cites W3104495176 @default.
- W3203852345 cites W3105938520 @default.
- W3203852345 cites W3128419980 @default.
- W3203852345 doi "https://doi.org/10.1049/ipr2.12347" @default.
- W3203852345 hasPublicationYear "2021" @default.
- W3203852345 type Work @default.
- W3203852345 sameAs 3203852345 @default.
- W3203852345 citedByCount "4" @default.
- W3203852345 countsByYear W32038523452022 @default.
- W3203852345 countsByYear W32038523452023 @default.
- W3203852345 crossrefType "journal-article" @default.
- W3203852345 hasAuthorship W3203852345A5010696821 @default.
- W3203852345 hasAuthorship W3203852345A5011525006 @default.
- W3203852345 hasAuthorship W3203852345A5016739565 @default.
- W3203852345 hasAuthorship W3203852345A5045440266 @default.
- W3203852345 hasAuthorship W3203852345A5055901236 @default.
- W3203852345 hasAuthorship W3203852345A5069383800 @default.