Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203878905> ?p ?o ?g. }
- W3203878905 endingPage "117695" @default.
- W3203878905 startingPage "117695" @default.
- W3203878905 abstract "Anomaly detection is the process of identifying unexpected data samples in datasets. Automated anomaly detection is either performed using supervised machine learning models, which require a labelled dataset for their calibration, or unsupervised models, which do not require labels. While academic research has produced a vast array of tools and machine learning models for automated anomaly detection, the research community focused on environmental systems still lacks a comparative analysis that is simultaneously comprehensive, objective, and systematic. This knowledge gap is addressed for the first time in this study, where 15 different supervised and unsupervised anomaly detection models are evaluated on 5 different environmental datasets from engineered and natural aquatic systems. To this end, anomaly detection performance, labelling efforts, as well as the impact of model and algorithm tuning are taken into account. As a result, our analysis reveals the relative strengths and weaknesses of the different approaches in an objective manner without bias for any particular paradigm in machine learning. Most importantly, our results show that expert-based data annotation is extremely valuable for anomaly detection based on machine learning." @default.
- W3203878905 created "2021-10-11" @default.
- W3203878905 creator A5001580782 @default.
- W3203878905 creator A5011434899 @default.
- W3203878905 creator A5014514759 @default.
- W3203878905 creator A5016112403 @default.
- W3203878905 creator A5024960580 @default.
- W3203878905 creator A5032461478 @default.
- W3203878905 creator A5040717971 @default.
- W3203878905 creator A5042726992 @default.
- W3203878905 creator A5064783033 @default.
- W3203878905 creator A5066328924 @default.
- W3203878905 creator A5080955251 @default.
- W3203878905 creator A5088927052 @default.
- W3203878905 creator A5091624220 @default.
- W3203878905 date "2021-11-01" @default.
- W3203878905 modified "2023-10-14" @default.
- W3203878905 title "The value of human data annotation for machine learning based anomaly detection in environmental systems" @default.
- W3203878905 cites W1965606617 @default.
- W3203878905 cites W1974894015 @default.
- W3203878905 cites W1975019656 @default.
- W3203878905 cites W1975854236 @default.
- W3203878905 cites W1997576362 @default.
- W3203878905 cites W2006750137 @default.
- W3203878905 cites W2026775847 @default.
- W3203878905 cites W2046328446 @default.
- W3203878905 cites W2048066818 @default.
- W3203878905 cites W2057415864 @default.
- W3203878905 cites W2058153045 @default.
- W3203878905 cites W2061678631 @default.
- W3203878905 cites W2063912869 @default.
- W3203878905 cites W2091208661 @default.
- W3203878905 cites W2095902355 @default.
- W3203878905 cites W2122646361 @default.
- W3203878905 cites W2130071187 @default.
- W3203878905 cites W2132299778 @default.
- W3203878905 cites W2142047467 @default.
- W3203878905 cites W2157407862 @default.
- W3203878905 cites W2158698691 @default.
- W3203878905 cites W2160199604 @default.
- W3203878905 cites W2332153499 @default.
- W3203878905 cites W2477820874 @default.
- W3203878905 cites W2559902792 @default.
- W3203878905 cites W2600845876 @default.
- W3203878905 cites W2771100845 @default.
- W3203878905 cites W2807826300 @default.
- W3203878905 cites W2899072250 @default.
- W3203878905 cites W2980340910 @default.
- W3203878905 cites W3012362938 @default.
- W3203878905 cites W3085114395 @default.
- W3203878905 cites W3094739199 @default.
- W3203878905 doi "https://doi.org/10.1016/j.watres.2021.117695" @default.
- W3203878905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34626884" @default.
- W3203878905 hasPublicationYear "2021" @default.
- W3203878905 type Work @default.
- W3203878905 sameAs 3203878905 @default.
- W3203878905 citedByCount "9" @default.
- W3203878905 countsByYear W32038789052022 @default.
- W3203878905 countsByYear W32038789052023 @default.
- W3203878905 crossrefType "journal-article" @default.
- W3203878905 hasAuthorship W3203878905A5001580782 @default.
- W3203878905 hasAuthorship W3203878905A5011434899 @default.
- W3203878905 hasAuthorship W3203878905A5014514759 @default.
- W3203878905 hasAuthorship W3203878905A5016112403 @default.
- W3203878905 hasAuthorship W3203878905A5024960580 @default.
- W3203878905 hasAuthorship W3203878905A5032461478 @default.
- W3203878905 hasAuthorship W3203878905A5040717971 @default.
- W3203878905 hasAuthorship W3203878905A5042726992 @default.
- W3203878905 hasAuthorship W3203878905A5064783033 @default.
- W3203878905 hasAuthorship W3203878905A5066328924 @default.
- W3203878905 hasAuthorship W3203878905A5080955251 @default.
- W3203878905 hasAuthorship W3203878905A5088927052 @default.
- W3203878905 hasAuthorship W3203878905A5091624220 @default.
- W3203878905 hasBestOaLocation W32038789051 @default.
- W3203878905 hasConcept C111472728 @default.
- W3203878905 hasConcept C111919701 @default.
- W3203878905 hasConcept C119857082 @default.
- W3203878905 hasConcept C121332964 @default.
- W3203878905 hasConcept C124101348 @default.
- W3203878905 hasConcept C12997251 @default.
- W3203878905 hasConcept C136389625 @default.
- W3203878905 hasConcept C138885662 @default.
- W3203878905 hasConcept C154945302 @default.
- W3203878905 hasConcept C26873012 @default.
- W3203878905 hasConcept C2776321320 @default.
- W3203878905 hasConcept C41008148 @default.
- W3203878905 hasConcept C50644808 @default.
- W3203878905 hasConcept C63882131 @default.
- W3203878905 hasConcept C739882 @default.
- W3203878905 hasConcept C8038995 @default.
- W3203878905 hasConcept C98045186 @default.
- W3203878905 hasConceptScore W3203878905C111472728 @default.
- W3203878905 hasConceptScore W3203878905C111919701 @default.
- W3203878905 hasConceptScore W3203878905C119857082 @default.
- W3203878905 hasConceptScore W3203878905C121332964 @default.
- W3203878905 hasConceptScore W3203878905C124101348 @default.
- W3203878905 hasConceptScore W3203878905C12997251 @default.
- W3203878905 hasConceptScore W3203878905C136389625 @default.