Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203893509> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3203893509 abstract "Software-defined networking (SDN) and network function virtualization (NFV) have enabled the efficient provision of network service. However, they also raised new tasks to monitor and ensure the status of virtualized service, and anomaly detection is one of such tasks. There have been many data-driven approaches to implement anomaly detection system (ADS) for virtual network functions in service function chains (SFCs). In this paper, we aim to develop more advanced deep learning models for ADS. Previous approaches used learning algorithms such as random forest (RF), gradient boosting machine (GBM), or deep neural networks (DNNs). However, these models have not utilized sequential dependencies in the data. Furthermore, they are limited as they can only apply to the SFC setting from which they were trained. Therefore, we propose several sequential deep learning models to learn time-series patterns and sequential patterns of the virtual network functions (VNFs) in the chain with variable lengths. As a result, the suggested models improve detection performance and apply to SFCs with varying numbers of VNFs." @default.
- W3203893509 created "2021-10-11" @default.
- W3203893509 creator A5004660619 @default.
- W3203893509 creator A5041152871 @default.
- W3203893509 creator A5079659487 @default.
- W3203893509 creator A5079848178 @default.
- W3203893509 date "2021-10-20" @default.
- W3203893509 modified "2023-09-27" @default.
- W3203893509 title "Sequential Deep Learning Architectures for Anomaly Detection in Virtual Network Function Chains" @default.
- W3203893509 cites W2019821286 @default.
- W3203893509 cites W2064675550 @default.
- W3203893509 cites W2131774270 @default.
- W3203893509 cites W2157895134 @default.
- W3203893509 cites W2559999940 @default.
- W3203893509 cites W2768569922 @default.
- W3203893509 cites W2792103155 @default.
- W3203893509 cites W2891117320 @default.
- W3203893509 cites W2892242081 @default.
- W3203893509 cites W2908742358 @default.
- W3203893509 cites W2962878352 @default.
- W3203893509 cites W2970266365 @default.
- W3203893509 cites W3010016912 @default.
- W3203893509 cites W3094092585 @default.
- W3203893509 cites W3109508207 @default.
- W3203893509 doi "https://doi.org/10.1109/ictc52510.2021.9621043" @default.
- W3203893509 hasPublicationYear "2021" @default.
- W3203893509 type Work @default.
- W3203893509 sameAs 3203893509 @default.
- W3203893509 citedByCount "2" @default.
- W3203893509 countsByYear W32038935092022 @default.
- W3203893509 countsByYear W32038935092023 @default.
- W3203893509 crossrefType "proceedings-article" @default.
- W3203893509 hasAuthorship W3203893509A5004660619 @default.
- W3203893509 hasAuthorship W3203893509A5041152871 @default.
- W3203893509 hasAuthorship W3203893509A5079659487 @default.
- W3203893509 hasAuthorship W3203893509A5079848178 @default.
- W3203893509 hasBestOaLocation W32038935092 @default.
- W3203893509 hasConcept C108583219 @default.
- W3203893509 hasConcept C111919701 @default.
- W3203893509 hasConcept C119857082 @default.
- W3203893509 hasConcept C120314980 @default.
- W3203893509 hasConcept C14036430 @default.
- W3203893509 hasConcept C154945302 @default.
- W3203893509 hasConcept C200789330 @default.
- W3203893509 hasConcept C2776874963 @default.
- W3203893509 hasConcept C41008148 @default.
- W3203893509 hasConcept C46686674 @default.
- W3203893509 hasConcept C50644808 @default.
- W3203893509 hasConcept C513985346 @default.
- W3203893509 hasConcept C739882 @default.
- W3203893509 hasConcept C78458016 @default.
- W3203893509 hasConcept C79974875 @default.
- W3203893509 hasConcept C86803240 @default.
- W3203893509 hasConceptScore W3203893509C108583219 @default.
- W3203893509 hasConceptScore W3203893509C111919701 @default.
- W3203893509 hasConceptScore W3203893509C119857082 @default.
- W3203893509 hasConceptScore W3203893509C120314980 @default.
- W3203893509 hasConceptScore W3203893509C14036430 @default.
- W3203893509 hasConceptScore W3203893509C154945302 @default.
- W3203893509 hasConceptScore W3203893509C200789330 @default.
- W3203893509 hasConceptScore W3203893509C2776874963 @default.
- W3203893509 hasConceptScore W3203893509C41008148 @default.
- W3203893509 hasConceptScore W3203893509C46686674 @default.
- W3203893509 hasConceptScore W3203893509C50644808 @default.
- W3203893509 hasConceptScore W3203893509C513985346 @default.
- W3203893509 hasConceptScore W3203893509C739882 @default.
- W3203893509 hasConceptScore W3203893509C78458016 @default.
- W3203893509 hasConceptScore W3203893509C79974875 @default.
- W3203893509 hasConceptScore W3203893509C86803240 @default.
- W3203893509 hasFunder F4320335489 @default.
- W3203893509 hasLocation W32038935091 @default.
- W3203893509 hasLocation W32038935092 @default.
- W3203893509 hasOpenAccess W3203893509 @default.
- W3203893509 hasPrimaryLocation W32038935091 @default.
- W3203893509 hasRelatedWork W2179940748 @default.
- W3203893509 hasRelatedWork W2332431317 @default.
- W3203893509 hasRelatedWork W2515787115 @default.
- W3203893509 hasRelatedWork W2886196639 @default.
- W3203893509 hasRelatedWork W2941726965 @default.
- W3203893509 hasRelatedWork W3044458868 @default.
- W3203893509 hasRelatedWork W3108286940 @default.
- W3203893509 hasRelatedWork W3109508207 @default.
- W3203893509 hasRelatedWork W3173317810 @default.
- W3203893509 hasRelatedWork W4220785415 @default.
- W3203893509 isParatext "false" @default.
- W3203893509 isRetracted "false" @default.
- W3203893509 magId "3203893509" @default.
- W3203893509 workType "article" @default.