Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203924145> ?p ?o ?g. }
- W3203924145 endingPage "2688" @default.
- W3203924145 startingPage "2688" @default.
- W3203924145 abstract "As determining the probability of the exceedance of maximum precipitation over a specified duration is critical to hydrotechnical design, particularly in the context of climate change, a model was developed to perform a frequency analysis of maximum precipitation of a specified duration. The PMAXΤP model (Precipitation MAXimum Time (duration) Probability) harbors a pair of computational modules fulfilling different roles: (i) statistical analysis of precipitation series, and (ii) estimation of maximum precipitation for a specified duration and its probability of exceedance. The input data consist of homogeneous 30-element series of precipitation values for 16 different durations: 5, 10, 15, 30, 45, 60, 90, 120, 180, 360, 720, 1080, 1440, 2160, 2880, and 4320 min, obtained through Annual Maximum Precipitation (AMP) and Peaks-Over-Threshold (POT) approaches. The statistical analysis of the precipitation series includes: (i) detecting outliers using the Grubbs-Beck test; (ii) checking for the random variable’s independence using the Wald-Wolfowitz test and the Anderson serial correlation coefficient test; (iii) checking the random variable’s stationarity using nonparametric tests, e.g., the Kruskal-Wallis test and Spearman rank correlation coefficient test for trends of mean and variance; (iv) identifying the trend of the random variables using correlation and regression analysis, including an evaluation of the form of the trend function; and (v) checking for the internal correlation of the random variables using the Anderson autocorrelation coefficient test. To estimate maximum precipitations of a specified duration and with a specified probability of exceedance, three-parameter theoretical probability distributions were used: a shifted gamma distribution (Pearson type III), a log-normal distribution, a Weibull distribution (Fisher-Tippett type III), a log-gamma distribution, as well as a two-parameter Gumbel distribution. The best distribution was selected by: (i) maximum likelihood estimation of parameters; (ii) tests of the hypothesis of goodness of fit of the theoretical probability distribution function with the empirical distribution using Pearson’s χ2 test; (iii) selection of the best-fitting function within each type according to the criterion of minimum Kolmogorov distance; (iv) selection of the most credible probability distribution function from the set of various types of best-fitting functions according to the Akaike information criterion; and (v) verification of the most credible function using single-dimensional tests of goodness of fit: the Kolmogorov-Smirnov test, the Anderson-Darling test, the Liao-Shimokawa test, and Kuiper’s test. The PMAXTP model was tested on data from two meteorological stations in northern Poland (Chojnice and Bialystok) drawn from a digital database of high-resolution precipitation records for the period of 1986 to 2015, available for 100 stations in Poland (i.e., the Polish Atlas of Rainfall Intensities (PANDa)). Values of maximum precipitation with a specified probability of exceedance obtained from the PMAXTP model were compared with values obtained from the probabilistic Bogdanowicz-Stachý model. The comparative analysis was based on the standard error of fit, graphs of the density function for the probability of exceedance, and estimated quantile errors. The errors of fit were lower for the PMAXTP compared to the Bogdanowicz-Stachý model. For both stations, the smallest errors were obtained for the quantiles determined on the basis of maximum precipitation POT using PMAXTP." @default.
- W3203924145 created "2021-10-11" @default.
- W3203924145 creator A5005181761 @default.
- W3203924145 creator A5015639176 @default.
- W3203924145 creator A5022594140 @default.
- W3203924145 creator A5083312026 @default.
- W3203924145 date "2021-09-28" @default.
- W3203924145 modified "2023-10-10" @default.
- W3203924145 title "A Probabilistic Model for Maximum Rainfall Frequency Analysis" @default.
- W3203924145 cites W1483176166 @default.
- W3203924145 cites W1504738275 @default.
- W3203924145 cites W1531401350 @default.
- W3203924145 cites W1605067897 @default.
- W3203924145 cites W1901893039 @default.
- W3203924145 cites W1963484837 @default.
- W3203924145 cites W1964513767 @default.
- W3203924145 cites W1967128226 @default.
- W3203924145 cites W1986149296 @default.
- W3203924145 cites W2007424826 @default.
- W3203924145 cites W2013089794 @default.
- W3203924145 cites W2013909639 @default.
- W3203924145 cites W2015339214 @default.
- W3203924145 cites W2016405631 @default.
- W3203924145 cites W2024737169 @default.
- W3203924145 cites W2028267147 @default.
- W3203924145 cites W2040160896 @default.
- W3203924145 cites W2047730149 @default.
- W3203924145 cites W2063730763 @default.
- W3203924145 cites W2068031355 @default.
- W3203924145 cites W2074020138 @default.
- W3203924145 cites W2078483536 @default.
- W3203924145 cites W2088727480 @default.
- W3203924145 cites W2090202999 @default.
- W3203924145 cites W2099652233 @default.
- W3203924145 cites W2108719872 @default.
- W3203924145 cites W2112105596 @default.
- W3203924145 cites W2112742330 @default.
- W3203924145 cites W2116499601 @default.
- W3203924145 cites W2120043973 @default.
- W3203924145 cites W2139224138 @default.
- W3203924145 cites W2142289722 @default.
- W3203924145 cites W2142635246 @default.
- W3203924145 cites W2146568328 @default.
- W3203924145 cites W2148650246 @default.
- W3203924145 cites W2153700325 @default.
- W3203924145 cites W2159689047 @default.
- W3203924145 cites W2274662179 @default.
- W3203924145 cites W2312259339 @default.
- W3203924145 cites W2577453864 @default.
- W3203924145 cites W2737088591 @default.
- W3203924145 cites W2746908980 @default.
- W3203924145 cites W2753145633 @default.
- W3203924145 cites W2757764505 @default.
- W3203924145 cites W2885368105 @default.
- W3203924145 cites W2914264130 @default.
- W3203924145 cites W2995025749 @default.
- W3203924145 cites W3003910764 @default.
- W3203924145 cites W3164405782 @default.
- W3203924145 cites W4232578597 @default.
- W3203924145 cites W4251428492 @default.
- W3203924145 doi "https://doi.org/10.3390/w13192688" @default.
- W3203924145 hasPublicationYear "2021" @default.
- W3203924145 type Work @default.
- W3203924145 sameAs 3203924145 @default.
- W3203924145 citedByCount "7" @default.
- W3203924145 countsByYear W32039241452022 @default.
- W3203924145 countsByYear W32039241452023 @default.
- W3203924145 crossrefType "journal-article" @default.
- W3203924145 hasAuthorship W3203924145A5005181761 @default.
- W3203924145 hasAuthorship W3203924145A5015639176 @default.
- W3203924145 hasAuthorship W3203924145A5022594140 @default.
- W3203924145 hasAuthorship W3203924145A5083312026 @default.
- W3203924145 hasBestOaLocation W32039241451 @default.
- W3203924145 hasConcept C105795698 @default.
- W3203924145 hasConcept C107054158 @default.
- W3203924145 hasConcept C121332964 @default.
- W3203924145 hasConcept C122123141 @default.
- W3203924145 hasConcept C151730666 @default.
- W3203924145 hasConcept C153294291 @default.
- W3203924145 hasConcept C159744936 @default.
- W3203924145 hasConcept C197055811 @default.
- W3203924145 hasConcept C2779343474 @default.
- W3203924145 hasConcept C2780092901 @default.
- W3203924145 hasConcept C33923547 @default.
- W3203924145 hasConcept C5297727 @default.
- W3203924145 hasConcept C86803240 @default.
- W3203924145 hasConceptScore W3203924145C105795698 @default.
- W3203924145 hasConceptScore W3203924145C107054158 @default.
- W3203924145 hasConceptScore W3203924145C121332964 @default.
- W3203924145 hasConceptScore W3203924145C122123141 @default.
- W3203924145 hasConceptScore W3203924145C151730666 @default.
- W3203924145 hasConceptScore W3203924145C153294291 @default.
- W3203924145 hasConceptScore W3203924145C159744936 @default.
- W3203924145 hasConceptScore W3203924145C197055811 @default.
- W3203924145 hasConceptScore W3203924145C2779343474 @default.
- W3203924145 hasConceptScore W3203924145C2780092901 @default.
- W3203924145 hasConceptScore W3203924145C33923547 @default.
- W3203924145 hasConceptScore W3203924145C5297727 @default.