Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203974877> ?p ?o ?g. }
- W3203974877 endingPage "8316" @default.
- W3203974877 startingPage "8306" @default.
- W3203974877 abstract "Despite their relevance for organic electronics, quantum machine learning (QML) models of molecular electronic properties, such as HOMO-LUMO-gaps, often struggle to achieve satisfying data-efficiency as measured by decreasing prediction errors for increasing training set sizes. We demonstrate that partitioning training sets into different chemical classes prior to training results in independently trained QML models with overall reduced training data needs. For organic molecules drawn from previously published QM7 and QM9-data-sets we have identified and exploited three relevant classes corresponding to compounds containing either aromatic rings and carbonyl groups, or single unsaturated bonds, or saturated bonds The selected QML models of band-gaps (considered at GW and hybrid DFT levels of theory) reach mean absolute prediction errors of ∼0.1 eV for up to an order of magnitude fewer training molecules than for QML models trained on randomly selected molecules. Comparison to Δ-QML models of band-gaps indicates that selected QML exhibit superior data-efficiency. Our findings suggest that selected QML, e.g. based on simple classifications prior to training, could help to successfully tackle challenging quantum property screening tasks of large libraries with high fidelity and low computational burden." @default.
- W3203974877 created "2021-10-11" @default.
- W3203974877 creator A5079528579 @default.
- W3203974877 creator A5082665885 @default.
- W3203974877 creator A5088793872 @default.
- W3203974877 date "2022-01-01" @default.
- W3203974877 modified "2023-10-15" @default.
- W3203974877 title "Selected machine learning of HOMO–LUMO gaps with improved data-efficiency" @default.
- W3203974877 cites W1531674615 @default.
- W3203974877 cites W1865667476 @default.
- W3203974877 cites W1971044734 @default.
- W3203974877 cites W1975147762 @default.
- W3203974877 cites W1977054502 @default.
- W3203974877 cites W1998260904 @default.
- W3203974877 cites W1999638776 @default.
- W3203974877 cites W2011327487 @default.
- W3203974877 cites W2025444507 @default.
- W3203974877 cites W2025868593 @default.
- W3203974877 cites W2030976617 @default.
- W3203974877 cites W2034097448 @default.
- W3203974877 cites W2037761619 @default.
- W3203974877 cites W2038702914 @default.
- W3203974877 cites W2041652846 @default.
- W3203974877 cites W2080635178 @default.
- W3203974877 cites W2084135044 @default.
- W3203974877 cites W2103057235 @default.
- W3203974877 cites W2104489082 @default.
- W3203974877 cites W2108995755 @default.
- W3203974877 cites W2114704115 @default.
- W3203974877 cites W2143061492 @default.
- W3203974877 cites W2143981217 @default.
- W3203974877 cites W2153693853 @default.
- W3203974877 cites W2230728100 @default.
- W3203974877 cites W2279481448 @default.
- W3203974877 cites W2478294658 @default.
- W3203974877 cites W2509907061 @default.
- W3203974877 cites W2552981463 @default.
- W3203974877 cites W2563751252 @default.
- W3203974877 cites W2565751006 @default.
- W3203974877 cites W2580767461 @default.
- W3203974877 cites W2585152223 @default.
- W3203974877 cites W2753962198 @default.
- W3203974877 cites W2778051509 @default.
- W3203974877 cites W2787894218 @default.
- W3203974877 cites W2792348590 @default.
- W3203974877 cites W2794704841 @default.
- W3203974877 cites W2794979247 @default.
- W3203974877 cites W2799937185 @default.
- W3203974877 cites W2801870733 @default.
- W3203974877 cites W2807691742 @default.
- W3203974877 cites W2884430236 @default.
- W3203974877 cites W2886916841 @default.
- W3203974877 cites W2901005646 @default.
- W3203974877 cites W2923693308 @default.
- W3203974877 cites W2945646630 @default.
- W3203974877 cites W2949095042 @default.
- W3203974877 cites W2953033603 @default.
- W3203974877 cites W2962872055 @default.
- W3203974877 cites W2978032524 @default.
- W3203974877 cites W2984234582 @default.
- W3203974877 cites W3003486042 @default.
- W3203974877 cites W3006607755 @default.
- W3203974877 cites W3014104700 @default.
- W3203974877 cites W3085090411 @default.
- W3203974877 cites W3089428833 @default.
- W3203974877 cites W3101744125 @default.
- W3203974877 cites W3102449990 @default.
- W3203974877 cites W3102797483 @default.
- W3203974877 cites W3103502300 @default.
- W3203974877 cites W3104543849 @default.
- W3203974877 cites W3106310231 @default.
- W3203974877 cites W3117876228 @default.
- W3203974877 cites W3129238601 @default.
- W3203974877 cites W3192643845 @default.
- W3203974877 cites W3203476487 @default.
- W3203974877 doi "https://doi.org/10.1039/d2ma00742h" @default.
- W3203974877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36561279" @default.
- W3203974877 hasPublicationYear "2022" @default.
- W3203974877 type Work @default.
- W3203974877 sameAs 3203974877 @default.
- W3203974877 citedByCount "5" @default.
- W3203974877 countsByYear W32039748772022 @default.
- W3203974877 countsByYear W32039748772023 @default.
- W3203974877 crossrefType "journal-article" @default.
- W3203974877 hasAuthorship W3203974877A5079528579 @default.
- W3203974877 hasAuthorship W3203974877A5082665885 @default.
- W3203974877 hasAuthorship W3203974877A5088793872 @default.
- W3203974877 hasBestOaLocation W32039748771 @default.
- W3203974877 hasConcept C119857082 @default.
- W3203974877 hasConcept C121332964 @default.
- W3203974877 hasConcept C14158195 @default.
- W3203974877 hasConcept C154945302 @default.
- W3203974877 hasConcept C158154518 @default.
- W3203974877 hasConcept C177264268 @default.
- W3203974877 hasConcept C17744445 @default.
- W3203974877 hasConcept C181966813 @default.
- W3203974877 hasConcept C199360897 @default.
- W3203974877 hasConcept C199539241 @default.