Matches in SemOpenAlex for { <https://semopenalex.org/work/W3203997652> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3203997652 abstract "Feature Selection (FS) is one of the power solutions used in Machine Learning (ML) problems, since it can help to remove irrelevant and redundant attributes, improve the performance, reduce computation time and build more robust models. In this work, a thorough study is carried out to examine the effect of well-performing filter and embedded FS methods for credit scoring. Further, we explore the effect of such methods on the prediction models obtained using different classification techniques. We conduct our experiments on the Australian credit dataset and the obtained experimental results show the benefits of the proposed methodology in credit risk analysis. By considering the selected FS methods with some well chosen classifiers, they make the evaluation more quickly and increase the accuracy of the classification." @default.
- W3203997652 created "2021-10-11" @default.
- W3203997652 creator A5032292618 @default.
- W3203997652 creator A5067618393 @default.
- W3203997652 creator A5069262490 @default.
- W3203997652 date "2021-08-25" @default.
- W3203997652 modified "2023-09-26" @default.
- W3203997652 title "Feature selection based on machine learning for credit scoring : An evaluation of filter and embedded methods" @default.
- W3203997652 cites W2085565809 @default.
- W3203997652 cites W2103780778 @default.
- W3203997652 cites W2253338421 @default.
- W3203997652 cites W2336631262 @default.
- W3203997652 cites W2736060538 @default.
- W3203997652 cites W2811423659 @default.
- W3203997652 cites W2897120700 @default.
- W3203997652 cites W2933331543 @default.
- W3203997652 cites W2968569598 @default.
- W3203997652 cites W2977098467 @default.
- W3203997652 cites W2980795138 @default.
- W3203997652 cites W2993142064 @default.
- W3203997652 cites W3025209066 @default.
- W3203997652 cites W3033559620 @default.
- W3203997652 cites W3046045515 @default.
- W3203997652 cites W3091695621 @default.
- W3203997652 cites W3097826249 @default.
- W3203997652 cites W4239510810 @default.
- W3203997652 doi "https://doi.org/10.1109/inista52262.2021.9548410" @default.
- W3203997652 hasPublicationYear "2021" @default.
- W3203997652 type Work @default.
- W3203997652 sameAs 3203997652 @default.
- W3203997652 citedByCount "5" @default.
- W3203997652 countsByYear W32039976522022 @default.
- W3203997652 countsByYear W32039976522023 @default.
- W3203997652 crossrefType "proceedings-article" @default.
- W3203997652 hasAuthorship W3203997652A5032292618 @default.
- W3203997652 hasAuthorship W3203997652A5067618393 @default.
- W3203997652 hasAuthorship W3203997652A5069262490 @default.
- W3203997652 hasConcept C106131492 @default.
- W3203997652 hasConcept C11413529 @default.
- W3203997652 hasConcept C119857082 @default.
- W3203997652 hasConcept C124101348 @default.
- W3203997652 hasConcept C138885662 @default.
- W3203997652 hasConcept C148483581 @default.
- W3203997652 hasConcept C154945302 @default.
- W3203997652 hasConcept C2776401178 @default.
- W3203997652 hasConcept C31972630 @default.
- W3203997652 hasConcept C41008148 @default.
- W3203997652 hasConcept C41895202 @default.
- W3203997652 hasConcept C45374587 @default.
- W3203997652 hasConcept C81917197 @default.
- W3203997652 hasConceptScore W3203997652C106131492 @default.
- W3203997652 hasConceptScore W3203997652C11413529 @default.
- W3203997652 hasConceptScore W3203997652C119857082 @default.
- W3203997652 hasConceptScore W3203997652C124101348 @default.
- W3203997652 hasConceptScore W3203997652C138885662 @default.
- W3203997652 hasConceptScore W3203997652C148483581 @default.
- W3203997652 hasConceptScore W3203997652C154945302 @default.
- W3203997652 hasConceptScore W3203997652C2776401178 @default.
- W3203997652 hasConceptScore W3203997652C31972630 @default.
- W3203997652 hasConceptScore W3203997652C41008148 @default.
- W3203997652 hasConceptScore W3203997652C41895202 @default.
- W3203997652 hasConceptScore W3203997652C45374587 @default.
- W3203997652 hasConceptScore W3203997652C81917197 @default.
- W3203997652 hasLocation W32039976521 @default.
- W3203997652 hasOpenAccess W3203997652 @default.
- W3203997652 hasPrimaryLocation W32039976521 @default.
- W3203997652 hasRelatedWork W2388140755 @default.
- W3203997652 hasRelatedWork W2899084033 @default.
- W3203997652 hasRelatedWork W2961085424 @default.
- W3203997652 hasRelatedWork W3087493185 @default.
- W3203997652 hasRelatedWork W3163334550 @default.
- W3203997652 hasRelatedWork W3200179079 @default.
- W3203997652 hasRelatedWork W4286629047 @default.
- W3203997652 hasRelatedWork W4293525103 @default.
- W3203997652 hasRelatedWork W4306674287 @default.
- W3203997652 hasRelatedWork W4224009465 @default.
- W3203997652 isParatext "false" @default.
- W3203997652 isRetracted "false" @default.
- W3203997652 magId "3203997652" @default.
- W3203997652 workType "article" @default.