Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204000978> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3204000978 endingPage "33" @default.
- W3204000978 startingPage "23" @default.
- W3204000978 abstract "Machine Learning (ML) involves making a machine able to learn and take decisions on real-life problems by working with an efficient set of algorithms. The generated ML models find application in different areas of research and management. One such field, automotive technology, employs ML enabled commercialized advanced driver assistance systems (ADAS) which include traffic sign recognition as a part. With the increasing demand for the intelligence of vehicles, and the advent of self-driving cars, it is extremely necessary to detect and recognize traffic signs automatically through computer technology. For this, neural networks can be applied for analyzing images of traffic signs for cognitive decision making by autonomous vehicles. Neural networks are the computing systems which act as a means of performing ML. In this work, a convolutional neural network (CNN) based ML model is built for recognition of traffic signs accurately for decision making, when installed in driverless vehicles." @default.
- W3204000978 created "2021-10-11" @default.
- W3204000978 creator A5056374665 @default.
- W3204000978 creator A5064313044 @default.
- W3204000978 date "2021-09-26" @default.
- W3204000978 modified "2023-10-14" @default.
- W3204000978 title "CNN Based Approach for Traffic Sign Recognition System" @default.
- W3204000978 cites W2108069432 @default.
- W3204000978 cites W2117876524 @default.
- W3204000978 cites W2295883547 @default.
- W3204000978 cites W2523198174 @default.
- W3204000978 cites W2532247935 @default.
- W3204000978 cites W2598545345 @default.
- W3204000978 cites W2605909392 @default.
- W3204000978 cites W2732426119 @default.
- W3204000978 cites W2739574231 @default.
- W3204000978 cites W2996852484 @default.
- W3204000978 cites W3010398094 @default.
- W3204000978 cites W3032413505 @default.
- W3204000978 cites W3106855956 @default.
- W3204000978 cites W3125872774 @default.
- W3204000978 cites W3128164723 @default.
- W3204000978 doi "https://doi.org/10.21467/ajgr.11.1.23-33" @default.
- W3204000978 hasPublicationYear "2021" @default.
- W3204000978 type Work @default.
- W3204000978 sameAs 3204000978 @default.
- W3204000978 citedByCount "5" @default.
- W3204000978 countsByYear W32040009782022 @default.
- W3204000978 countsByYear W32040009782023 @default.
- W3204000978 crossrefType "journal-article" @default.
- W3204000978 hasAuthorship W3204000978A5056374665 @default.
- W3204000978 hasAuthorship W3204000978A5064313044 @default.
- W3204000978 hasBestOaLocation W32040009781 @default.
- W3204000978 hasConcept C119857082 @default.
- W3204000978 hasConcept C127413603 @default.
- W3204000978 hasConcept C134306372 @default.
- W3204000978 hasConcept C139676723 @default.
- W3204000978 hasConcept C146978453 @default.
- W3204000978 hasConcept C154945302 @default.
- W3204000978 hasConcept C177264268 @default.
- W3204000978 hasConcept C199360897 @default.
- W3204000978 hasConcept C202444582 @default.
- W3204000978 hasConcept C2983860417 @default.
- W3204000978 hasConcept C33923547 @default.
- W3204000978 hasConcept C41008148 @default.
- W3204000978 hasConcept C50644808 @default.
- W3204000978 hasConcept C526921623 @default.
- W3204000978 hasConcept C6528762 @default.
- W3204000978 hasConcept C81363708 @default.
- W3204000978 hasConcept C87833898 @default.
- W3204000978 hasConcept C9652623 @default.
- W3204000978 hasConceptScore W3204000978C119857082 @default.
- W3204000978 hasConceptScore W3204000978C127413603 @default.
- W3204000978 hasConceptScore W3204000978C134306372 @default.
- W3204000978 hasConceptScore W3204000978C139676723 @default.
- W3204000978 hasConceptScore W3204000978C146978453 @default.
- W3204000978 hasConceptScore W3204000978C154945302 @default.
- W3204000978 hasConceptScore W3204000978C177264268 @default.
- W3204000978 hasConceptScore W3204000978C199360897 @default.
- W3204000978 hasConceptScore W3204000978C202444582 @default.
- W3204000978 hasConceptScore W3204000978C2983860417 @default.
- W3204000978 hasConceptScore W3204000978C33923547 @default.
- W3204000978 hasConceptScore W3204000978C41008148 @default.
- W3204000978 hasConceptScore W3204000978C50644808 @default.
- W3204000978 hasConceptScore W3204000978C526921623 @default.
- W3204000978 hasConceptScore W3204000978C6528762 @default.
- W3204000978 hasConceptScore W3204000978C81363708 @default.
- W3204000978 hasConceptScore W3204000978C87833898 @default.
- W3204000978 hasConceptScore W3204000978C9652623 @default.
- W3204000978 hasIssue "1" @default.
- W3204000978 hasLocation W32040009781 @default.
- W3204000978 hasOpenAccess W3204000978 @default.
- W3204000978 hasPrimaryLocation W32040009781 @default.
- W3204000978 hasRelatedWork W2922323831 @default.
- W3204000978 hasRelatedWork W2950329353 @default.
- W3204000978 hasRelatedWork W2982055638 @default.
- W3204000978 hasRelatedWork W3047972781 @default.
- W3204000978 hasRelatedWork W4200348283 @default.
- W3204000978 hasRelatedWork W4210563581 @default.
- W3204000978 hasRelatedWork W4226064496 @default.
- W3204000978 hasRelatedWork W4282971661 @default.
- W3204000978 hasRelatedWork W4286647459 @default.
- W3204000978 hasRelatedWork W4378420795 @default.
- W3204000978 hasVolume "11" @default.
- W3204000978 isParatext "false" @default.
- W3204000978 isRetracted "false" @default.
- W3204000978 magId "3204000978" @default.
- W3204000978 workType "article" @default.