Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204015220> ?p ?o ?g. }
- W3204015220 endingPage "104281" @default.
- W3204015220 startingPage "104281" @default.
- W3204015220 abstract "Billions of tons of quarried material are globally produced per annum, generating siliceous solid cutting and powder waste which are usually disposed of in landfill sites. Herein, two cheap and distinct granite quarry waste cuttings have been reduced into microproppant dimensions. They were characterized for potential application in hydraulic fracturing as an economic alternative to siliceous commercially available microproppants. The particle size distributions , morphology, particle density, the mineralogy , microscale mechanical hardness, and modulus of the produced microproppants were evaluated to confirm their potential application as microproppants. Also, the split core fracture conductivity of the produced microproppants was measured. Laser diffraction revealed particle size distribution with d50 of about 11 μm suitable for common natural fracture widths . Morphological images showed low sphericity and roundness appropriate for channel fracturing proppant placement. A particle density of 2.6 and 2.9 g/cc was obtained for the produced microproppants. However, a review of most granite particle density indicated proximity to commonly used quartz-based microproppant. Their density and smaller sizes suggest good transport properties. Results of the mineralogy study showed high amounts of silica content with dominant crystal phases of albite , anorthite , and orthoclase which exhibited theoretical hardness between (5.2–7.2 GPa) and modulus between (77.8–98.0 GPa). Nanoindentation confirmed the micromechanical hardness and modulus determined by density functional theory . The hardness and modulus lie between class C Fly ash and Ottawa sand which have demonstrated good performance as microproppants. Hence granite microproppants have the potential to resist reservoir stresses. Granite microproppant pillars were able to improve the baseline permeability of a fractured shale core by a magnitude of ten. Granitic microproppants are cheaper sources of silica capable of maintaining microfracture width and preventing rapid production decline within unconventional shale reservoirs while contributing to the conservation of overly exploited natural sand deposits. • Potential application of granite cutting wastes as microproppants was investigated. • Granite microproppants show favourable physical properties for channel fracturing. • Granite microproppants possess high silica content like commercial proppants. • Granitic proppants have sufficient hardness and modulus to resist reservoir stresses. • Fractured shale core permeability improves in the presence of microproppant pillars." @default.
- W3204015220 created "2021-10-11" @default.
- W3204015220 creator A5013071299 @default.
- W3204015220 creator A5041261982 @default.
- W3204015220 creator A5073170564 @default.
- W3204015220 creator A5080081366 @default.
- W3204015220 creator A5086234953 @default.
- W3204015220 creator A5091827889 @default.
- W3204015220 date "2021-12-01" @default.
- W3204015220 modified "2023-10-16" @default.
- W3204015220 title "Potential valorization of granitic waste material as microproppant for induced unpropped microfractures in shale" @default.
- W3204015220 cites W1971058928 @default.
- W3204015220 cites W1981368803 @default.
- W3204015220 cites W1984003326 @default.
- W3204015220 cites W2014612117 @default.
- W3204015220 cites W2016325227 @default.
- W3204015220 cites W2022470359 @default.
- W3204015220 cites W2026907619 @default.
- W3204015220 cites W2029898566 @default.
- W3204015220 cites W2036113194 @default.
- W3204015220 cites W2044807799 @default.
- W3204015220 cites W2046539852 @default.
- W3204015220 cites W2048340958 @default.
- W3204015220 cites W2051166244 @default.
- W3204015220 cites W2052910633 @default.
- W3204015220 cites W2059329575 @default.
- W3204015220 cites W2066182334 @default.
- W3204015220 cites W2073531811 @default.
- W3204015220 cites W2077137667 @default.
- W3204015220 cites W2086933933 @default.
- W3204015220 cites W2087585288 @default.
- W3204015220 cites W2098965699 @default.
- W3204015220 cites W2126507399 @default.
- W3204015220 cites W2147699377 @default.
- W3204015220 cites W2159752439 @default.
- W3204015220 cites W2163704778 @default.
- W3204015220 cites W2264626150 @default.
- W3204015220 cites W2264879117 @default.
- W3204015220 cites W2283740108 @default.
- W3204015220 cites W2306643305 @default.
- W3204015220 cites W2472085654 @default.
- W3204015220 cites W2583902963 @default.
- W3204015220 cites W2586703324 @default.
- W3204015220 cites W2588282594 @default.
- W3204015220 cites W2604979947 @default.
- W3204015220 cites W2613133109 @default.
- W3204015220 cites W2731053177 @default.
- W3204015220 cites W2766083035 @default.
- W3204015220 cites W2792846871 @default.
- W3204015220 cites W2803016506 @default.
- W3204015220 cites W2805955228 @default.
- W3204015220 cites W2918574770 @default.
- W3204015220 cites W2951686359 @default.
- W3204015220 cites W2965321106 @default.
- W3204015220 cites W2997007151 @default.
- W3204015220 cites W3002996920 @default.
- W3204015220 cites W3014632802 @default.
- W3204015220 cites W3026622794 @default.
- W3204015220 cites W3030732695 @default.
- W3204015220 cites W3043522571 @default.
- W3204015220 cites W3046410175 @default.
- W3204015220 cites W3087484764 @default.
- W3204015220 cites W3092851665 @default.
- W3204015220 cites W3157309676 @default.
- W3204015220 cites W3202870878 @default.
- W3204015220 cites W417196500 @default.
- W3204015220 doi "https://doi.org/10.1016/j.jngse.2021.104281" @default.
- W3204015220 hasPublicationYear "2021" @default.
- W3204015220 type Work @default.
- W3204015220 sameAs 3204015220 @default.
- W3204015220 citedByCount "4" @default.
- W3204015220 countsByYear W32040152202021 @default.
- W3204015220 countsByYear W32040152202022 @default.
- W3204015220 crossrefType "journal-article" @default.
- W3204015220 hasAuthorship W3204015220A5013071299 @default.
- W3204015220 hasAuthorship W3204015220A5041261982 @default.
- W3204015220 hasAuthorship W3204015220A5073170564 @default.
- W3204015220 hasAuthorship W3204015220A5080081366 @default.
- W3204015220 hasAuthorship W3204015220A5086234953 @default.
- W3204015220 hasAuthorship W3204015220A5091827889 @default.
- W3204015220 hasConcept C127313418 @default.
- W3204015220 hasConcept C159985019 @default.
- W3204015220 hasConcept C187320778 @default.
- W3204015220 hasConcept C192562407 @default.
- W3204015220 hasConcept C199289684 @default.
- W3204015220 hasConcept C2775859737 @default.
- W3204015220 hasConcept C2778520076 @default.
- W3204015220 hasConcept C2779096232 @default.
- W3204015220 hasConcept C2779870107 @default.
- W3204015220 hasConceptScore W3204015220C127313418 @default.
- W3204015220 hasConceptScore W3204015220C159985019 @default.
- W3204015220 hasConceptScore W3204015220C187320778 @default.
- W3204015220 hasConceptScore W3204015220C192562407 @default.
- W3204015220 hasConceptScore W3204015220C199289684 @default.
- W3204015220 hasConceptScore W3204015220C2775859737 @default.
- W3204015220 hasConceptScore W3204015220C2778520076 @default.
- W3204015220 hasConceptScore W3204015220C2779096232 @default.
- W3204015220 hasConceptScore W3204015220C2779870107 @default.