Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204015767> ?p ?o ?g. }
- W3204015767 abstract "Abstract Spatial autoregressive models typically rely on the assumption that the spatial dependence structure is known in advance and is represented by a deterministic spatial weights matrix, although it is unknown in most empirical applications. Thus, we investigate the estimation of sparse spatial dependence structures for regular lattice data. In particular, an adaptive least absolute shrinkage and selection operator (lasso) is used to select and estimate the individual nonzero connections of the spatial weights matrix. To recover the spatial dependence structure, we propose cross‐sectional resampling, assuming that the random process is exchangeable. The estimation procedure is based on a two‐step approach to circumvent simultaneity issues that typically arise from endogenous spatial autoregressive dependencies. The two‐step adaptive lasso approach with cross‐sectional resampling is verified using Monte Carlo simulations. Eventually, we apply the procedure to model nitrogen dioxide concentrations and show that estimating the spatial dependence structure contrary to using prespecified weights matrices improves the prediction accuracy considerably." @default.
- W3204015767 created "2021-10-11" @default.
- W3204015767 creator A5082964885 @default.
- W3204015767 creator A5088904698 @default.
- W3204015767 date "2021-09-25" @default.
- W3204015767 modified "2023-10-02" @default.
- W3204015767 title "Estimation of the spatial weighting matrix for regular lattice data—An adaptive lasso approach with cross‐sectional resampling" @default.
- W3204015767 cites W1515942108 @default.
- W3204015767 cites W1522046631 @default.
- W3204015767 cites W1927594589 @default.
- W3204015767 cites W1973749534 @default.
- W3204015767 cites W1973780821 @default.
- W3204015767 cites W1974463601 @default.
- W3204015767 cites W1979819647 @default.
- W3204015767 cites W1981145803 @default.
- W3204015767 cites W2012552016 @default.
- W3204015767 cites W2016583478 @default.
- W3204015767 cites W2020925091 @default.
- W3204015767 cites W2027081786 @default.
- W3204015767 cites W2028226037 @default.
- W3204015767 cites W2041178793 @default.
- W3204015767 cites W2041440829 @default.
- W3204015767 cites W2046607127 @default.
- W3204015767 cites W2050497240 @default.
- W3204015767 cites W2061730269 @default.
- W3204015767 cites W207017219 @default.
- W3204015767 cites W2071673199 @default.
- W3204015767 cites W2074685056 @default.
- W3204015767 cites W2077487941 @default.
- W3204015767 cites W2086455107 @default.
- W3204015767 cites W2088028068 @default.
- W3204015767 cites W2095541970 @default.
- W3204015767 cites W2109748507 @default.
- W3204015767 cites W2121748849 @default.
- W3204015767 cites W2127799226 @default.
- W3204015767 cites W2128739278 @default.
- W3204015767 cites W2135046866 @default.
- W3204015767 cites W2137670809 @default.
- W3204015767 cites W2144751663 @default.
- W3204015767 cites W2146352938 @default.
- W3204015767 cites W2148545246 @default.
- W3204015767 cites W2155930919 @default.
- W3204015767 cites W2165626679 @default.
- W3204015767 cites W2171101181 @default.
- W3204015767 cites W2172041548 @default.
- W3204015767 cites W2496675188 @default.
- W3204015767 cites W2510343895 @default.
- W3204015767 cites W2605661896 @default.
- W3204015767 cites W2790948082 @default.
- W3204015767 cites W2794779727 @default.
- W3204015767 cites W2907411870 @default.
- W3204015767 cites W3072492331 @default.
- W3204015767 cites W3120061832 @default.
- W3204015767 cites W3125553893 @default.
- W3204015767 cites W4247571494 @default.
- W3204015767 cites W59857474 @default.
- W3204015767 doi "https://doi.org/10.1002/env.2705" @default.
- W3204015767 hasPublicationYear "2021" @default.
- W3204015767 type Work @default.
- W3204015767 sameAs 3204015767 @default.
- W3204015767 citedByCount "4" @default.
- W3204015767 countsByYear W32040157672022 @default.
- W3204015767 countsByYear W32040157672023 @default.
- W3204015767 crossrefType "journal-article" @default.
- W3204015767 hasAuthorship W3204015767A5082964885 @default.
- W3204015767 hasAuthorship W3204015767A5088904698 @default.
- W3204015767 hasBestOaLocation W32040157671 @default.
- W3204015767 hasConcept C105795698 @default.
- W3204015767 hasConcept C11413529 @default.
- W3204015767 hasConcept C126255220 @default.
- W3204015767 hasConcept C126838900 @default.
- W3204015767 hasConcept C136764020 @default.
- W3204015767 hasConcept C138695830 @default.
- W3204015767 hasConcept C149782125 @default.
- W3204015767 hasConcept C150060386 @default.
- W3204015767 hasConcept C150921843 @default.
- W3204015767 hasConcept C159620131 @default.
- W3204015767 hasConcept C159877910 @default.
- W3204015767 hasConcept C183115368 @default.
- W3204015767 hasConcept C19499675 @default.
- W3204015767 hasConcept C28826006 @default.
- W3204015767 hasConcept C33923547 @default.
- W3204015767 hasConcept C37616216 @default.
- W3204015767 hasConcept C41008148 @default.
- W3204015767 hasConcept C71924100 @default.
- W3204015767 hasConceptScore W3204015767C105795698 @default.
- W3204015767 hasConceptScore W3204015767C11413529 @default.
- W3204015767 hasConceptScore W3204015767C126255220 @default.
- W3204015767 hasConceptScore W3204015767C126838900 @default.
- W3204015767 hasConceptScore W3204015767C136764020 @default.
- W3204015767 hasConceptScore W3204015767C138695830 @default.
- W3204015767 hasConceptScore W3204015767C149782125 @default.
- W3204015767 hasConceptScore W3204015767C150060386 @default.
- W3204015767 hasConceptScore W3204015767C150921843 @default.
- W3204015767 hasConceptScore W3204015767C159620131 @default.
- W3204015767 hasConceptScore W3204015767C159877910 @default.
- W3204015767 hasConceptScore W3204015767C183115368 @default.
- W3204015767 hasConceptScore W3204015767C19499675 @default.
- W3204015767 hasConceptScore W3204015767C28826006 @default.
- W3204015767 hasConceptScore W3204015767C33923547 @default.