Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204085401> ?p ?o ?g. }
- W3204085401 endingPage "8991" @default.
- W3204085401 startingPage "8991" @default.
- W3204085401 abstract "The magnitude of pollution in Lake Hawassa has been exacerbated by population growth and economic development in the city of Hawassa, which is hydrologically closed and retains pollutants entering it. This study was therefore aimed at examining seasonal and spatial variations in the water quality of Lake Hawassa Watershed (LHW) and identifying possible sources of pollution using multivariate statistical techniques. Water and effluent samples from LHW were collected monthly for analysis of 19 physicochemical parameters during dry and wet seasons at 19 monitoring stations. Multivariate statistical techniques (MVST) were used to investigate the influences of an anthropogenic intervention on the physicochemical characteristics of water quality at monitoring stations. Through cluster analysis (CA), all 19 monitoring stations were spatially grouped into two statistically significant clusters for the dry and wet seasons based on pollution index, which were designated as moderately polluted (MP) and highly polluted (HP). According to the study results, rivers and Lake Hawassa were moderately polluted (MP), while point sources (industry, hospitals and hotels) were found to be highly polluted (HP). Discriminant analysis (DA) was used to identify the most critical parameters to study the spatial variations, and seven significant parameters were extracted (electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), sodium ion (Na+), and potassium ion (K+) with the spatial variance to distinguish the pollution condition of the groups obtained using CA. Principal component analysis (PCA) was used to qualitatively determine the potential sources contributing to LHW pollution. In addition, three factors determining pollution levels during the dry and wet season were identified to explain 70.5% and 72.5% of the total variance, respectively. Various sources of pollution are prevalent in the LHW, including urban runoff, industrial discharges, diffused sources from agricultural land use, and livestock. A correlation matrix with seasonal variations was prepared for both seasons using physicochemical parameters. In conclusion, effective management of point and non-point source pollution is imperative to improve domestic, industrial, livestock, and agricultural runoff to reduce pollutants entering the Lake. In this regard, proper municipal and industrial wastewater treatment should be complemented, especially, by stringent management that requires a comprehensive application of technologies such as fertilizer management, ecological ditches, constructed wetlands, and buffer strips. Furthermore, application of indigenous aeration practices such as the use of drop structures at critical locations would help improve water quality in the lake watershed." @default.
- W3204085401 created "2021-10-11" @default.
- W3204085401 creator A5038741816 @default.
- W3204085401 creator A5058741876 @default.
- W3204085401 creator A5066722279 @default.
- W3204085401 date "2021-09-27" @default.
- W3204085401 modified "2023-10-07" @default.
- W3204085401 title "Evaluation of Seasonal and Spatial Variations in Water Quality and Identification of Potential Sources of Pollution Using Multivariate Statistical Techniques for Lake Hawassa Watershed, Ethiopia" @default.
- W3204085401 cites W1524229245 @default.
- W3204085401 cites W1544275441 @default.
- W3204085401 cites W1562695972 @default.
- W3204085401 cites W1907258640 @default.
- W3204085401 cites W1968049524 @default.
- W3204085401 cites W1974016316 @default.
- W3204085401 cites W1975745582 @default.
- W3204085401 cites W1977673682 @default.
- W3204085401 cites W1983786134 @default.
- W3204085401 cites W1984363611 @default.
- W3204085401 cites W1985493764 @default.
- W3204085401 cites W1992040474 @default.
- W3204085401 cites W2003363446 @default.
- W3204085401 cites W2027704180 @default.
- W3204085401 cites W2030099939 @default.
- W3204085401 cites W2031407013 @default.
- W3204085401 cites W2032003010 @default.
- W3204085401 cites W2032047304 @default.
- W3204085401 cites W2033923757 @default.
- W3204085401 cites W2036739943 @default.
- W3204085401 cites W2037319837 @default.
- W3204085401 cites W2037767995 @default.
- W3204085401 cites W2040160896 @default.
- W3204085401 cites W2043063883 @default.
- W3204085401 cites W2052055194 @default.
- W3204085401 cites W2052466840 @default.
- W3204085401 cites W2057864994 @default.
- W3204085401 cites W2066579884 @default.
- W3204085401 cites W2067162743 @default.
- W3204085401 cites W2069703065 @default.
- W3204085401 cites W2071216664 @default.
- W3204085401 cites W2075180403 @default.
- W3204085401 cites W2080619915 @default.
- W3204085401 cites W2083274400 @default.
- W3204085401 cites W2089551640 @default.
- W3204085401 cites W2089678324 @default.
- W3204085401 cites W2114215403 @default.
- W3204085401 cites W2114357073 @default.
- W3204085401 cites W2128605438 @default.
- W3204085401 cites W2136050503 @default.
- W3204085401 cites W2141639497 @default.
- W3204085401 cites W2148301966 @default.
- W3204085401 cites W2153028881 @default.
- W3204085401 cites W2160172778 @default.
- W3204085401 cites W2164303307 @default.
- W3204085401 cites W2169026438 @default.
- W3204085401 cites W2253092013 @default.
- W3204085401 cites W2312297136 @default.
- W3204085401 cites W2332393824 @default.
- W3204085401 cites W2512849376 @default.
- W3204085401 cites W2560254428 @default.
- W3204085401 cites W2794398734 @default.
- W3204085401 cites W2890595952 @default.
- W3204085401 cites W2894085935 @default.
- W3204085401 cites W2941593444 @default.
- W3204085401 cites W2964514191 @default.
- W3204085401 cites W2973279970 @default.
- W3204085401 cites W2980506351 @default.
- W3204085401 cites W2991195635 @default.
- W3204085401 cites W3033050485 @default.
- W3204085401 cites W3044403488 @default.
- W3204085401 cites W3089958506 @default.
- W3204085401 cites W3194946343 @default.
- W3204085401 cites W48088424 @default.
- W3204085401 doi "https://doi.org/10.3390/app11198991" @default.
- W3204085401 hasPublicationYear "2021" @default.
- W3204085401 type Work @default.
- W3204085401 sameAs 3204085401 @default.
- W3204085401 citedByCount "6" @default.
- W3204085401 countsByYear W32040854012022 @default.
- W3204085401 countsByYear W32040854012023 @default.
- W3204085401 crossrefType "journal-article" @default.
- W3204085401 hasAuthorship W3204085401A5038741816 @default.
- W3204085401 hasAuthorship W3204085401A5058741876 @default.
- W3204085401 hasAuthorship W3204085401A5066722279 @default.
- W3204085401 hasBestOaLocation W32040854011 @default.
- W3204085401 hasConcept C105795698 @default.
- W3204085401 hasConcept C107872376 @default.
- W3204085401 hasConcept C119857082 @default.
- W3204085401 hasConcept C127413603 @default.
- W3204085401 hasConcept C147455438 @default.
- W3204085401 hasConcept C150547873 @default.
- W3204085401 hasConcept C161584116 @default.
- W3204085401 hasConcept C178790620 @default.
- W3204085401 hasConcept C185592680 @default.
- W3204085401 hasConcept C187320778 @default.
- W3204085401 hasConcept C18903297 @default.
- W3204085401 hasConcept C2780797713 @default.
- W3204085401 hasConcept C33923547 @default.
- W3204085401 hasConcept C39432304 @default.