Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204085469> ?p ?o ?g. }
- W3204085469 endingPage "2254" @default.
- W3204085469 startingPage "2235" @default.
- W3204085469 abstract "Abstract. Predicting effective permeabilities of fractured rock masses is a crucial component of reservoir modeling. Its often realized with the discrete fracture network (DFN) method, whereby single-phase incompressible fluid flow is modeled in discrete representations of individual fractures in a network. Depending on the overall number of fractures, this can result in high computational costs. Equivalent continuum models (ECMs) provide an alternative approach by subdividing the fracture network into a grid of continuous medium cells, over which hydraulic properties are averaged for fluid flow simulations. While continuum methods have the advantage of lower computational costs and the possibility of including matrix properties, choosing the right cell size to discretize the fracture network into an ECM is crucial to provide accurate flow results and conserve anisotropic flow properties. Whereas several techniques exist to map a fracture network onto a grid of continuum cells, the complexity related to flow in fracture intersections is often ignored. Here, numerical simulations of Stokes flow in simple fracture intersections are utilized to analyze their effect on permeability. It is demonstrated that intersection lineaments oriented parallel to the principal direction of flow increase permeability in a process we term intersection flow localization (IFL). We propose a new method to generate ECMs that includes this effect with a directional pipe flow parameterization: the fracture-and-pipe model. Our approach is compared against an ECM method that does not take IFL into account by performing ECM-based upscaling with a massively parallelized Darcy flow solver capable of representing permeability anisotropy for individual grid cells. While IFL results in an increase in permeability at the local scale of the ECM cell (fracture scale), its effects on network-scale flow are minor. We investigated the effects of IFL for test cases with orthogonal fracture formations for various scales, fracture lengths, hydraulic apertures, and fracture densities. Only for global fracture porosities above 30 % does IFL start to increase the systems permeability. For lower fracture densities, the effects of IFL are smeared out in the upscaling process. However, we noticed a strong dependency of ECM-based upscaling on its grid resolution. Resolution tests suggests that, as long as the cell size is smaller than the minimal fracture length and larger than the maximal hydraulic aperture of the considered fracture network, the resulting effective permeabilities and anisotropies are resolution-independent. Within that range, ECMs are applicable to upscale flow in fracture networks." @default.
- W3204085469 created "2021-10-11" @default.
- W3204085469 creator A5030264731 @default.
- W3204085469 creator A5068752453 @default.
- W3204085469 creator A5086817294 @default.
- W3204085469 creator A5087990842 @default.
- W3204085469 date "2021-10-05" @default.
- W3204085469 modified "2023-10-14" @default.
- W3204085469 title "Investigating the effects of intersection flow localization in equivalent-continuum-based upscaling of flow in discrete fracture networks" @default.
- W3204085469 cites W1513796113 @default.
- W3204085469 cites W1614951384 @default.
- W3204085469 cites W1628330510 @default.
- W3204085469 cites W1879442276 @default.
- W3204085469 cites W1911545942 @default.
- W3204085469 cites W1974589788 @default.
- W3204085469 cites W1978305759 @default.
- W3204085469 cites W1982833447 @default.
- W3204085469 cites W1983067651 @default.
- W3204085469 cites W1986184186 @default.
- W3204085469 cites W1997583625 @default.
- W3204085469 cites W2006034514 @default.
- W3204085469 cites W2006715653 @default.
- W3204085469 cites W2007108813 @default.
- W3204085469 cites W2007113664 @default.
- W3204085469 cites W2018240588 @default.
- W3204085469 cites W2018248030 @default.
- W3204085469 cites W2020978393 @default.
- W3204085469 cites W2024335963 @default.
- W3204085469 cites W2025836343 @default.
- W3204085469 cites W2042650924 @default.
- W3204085469 cites W2043408739 @default.
- W3204085469 cites W2044751804 @default.
- W3204085469 cites W2045350840 @default.
- W3204085469 cites W2048569709 @default.
- W3204085469 cites W2048615184 @default.
- W3204085469 cites W2051875053 @default.
- W3204085469 cites W2051904589 @default.
- W3204085469 cites W2059400754 @default.
- W3204085469 cites W2085220875 @default.
- W3204085469 cites W2086326746 @default.
- W3204085469 cites W2090276952 @default.
- W3204085469 cites W2091129599 @default.
- W3204085469 cites W2091991433 @default.
- W3204085469 cites W2101791167 @default.
- W3204085469 cites W2102855159 @default.
- W3204085469 cites W2109923026 @default.
- W3204085469 cites W2120285078 @default.
- W3204085469 cites W2132138354 @default.
- W3204085469 cites W2134066908 @default.
- W3204085469 cites W2138440355 @default.
- W3204085469 cites W2145823301 @default.
- W3204085469 cites W2151993320 @default.
- W3204085469 cites W2152383451 @default.
- W3204085469 cites W2153028948 @default.
- W3204085469 cites W2205745736 @default.
- W3204085469 cites W2227401841 @default.
- W3204085469 cites W2340416788 @default.
- W3204085469 cites W2463664594 @default.
- W3204085469 cites W2531803770 @default.
- W3204085469 cites W2560702597 @default.
- W3204085469 cites W2571520280 @default.
- W3204085469 cites W2585527360 @default.
- W3204085469 cites W2625711828 @default.
- W3204085469 cites W2741193259 @default.
- W3204085469 cites W2770722695 @default.
- W3204085469 cites W2789713255 @default.
- W3204085469 cites W2884341468 @default.
- W3204085469 cites W2945692812 @default.
- W3204085469 cites W2964076483 @default.
- W3204085469 cites W2984355907 @default.
- W3204085469 cites W2996223216 @default.
- W3204085469 cites W2997382555 @default.
- W3204085469 cites W2998308274 @default.
- W3204085469 cites W3005601165 @default.
- W3204085469 cites W3088480864 @default.
- W3204085469 cites W3160599221 @default.
- W3204085469 cites W3204085469 @default.
- W3204085469 cites W4245517618 @default.
- W3204085469 cites W828261087 @default.
- W3204085469 doi "https://doi.org/10.5194/se-12-2235-2021" @default.
- W3204085469 hasPublicationYear "2021" @default.
- W3204085469 type Work @default.
- W3204085469 sameAs 3204085469 @default.
- W3204085469 citedByCount "6" @default.
- W3204085469 countsByYear W32040854692021 @default.
- W3204085469 countsByYear W32040854692022 @default.
- W3204085469 countsByYear W32040854692023 @default.
- W3204085469 crossrefType "journal-article" @default.
- W3204085469 hasAuthorship W3204085469A5030264731 @default.
- W3204085469 hasAuthorship W3204085469A5068752453 @default.
- W3204085469 hasAuthorship W3204085469A5086817294 @default.
- W3204085469 hasAuthorship W3204085469A5087990842 @default.
- W3204085469 hasBestOaLocation W32040854691 @default.
- W3204085469 hasConcept C120882062 @default.
- W3204085469 hasConcept C121332964 @default.
- W3204085469 hasConcept C126255220 @default.
- W3204085469 hasConcept C127313418 @default.
- W3204085469 hasConcept C134306372 @default.