Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204098402> ?p ?o ?g. }
- W3204098402 startingPage "17" @default.
- W3204098402 abstract "We study the robust - a la Chakrabarti, Cormode, and McGregor [STOC'08] - communication complexity of the maximum bipartite matching problem. The edges of an adversarially chosen n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send a single message to Bob, using which Bob has to output an approximate maximum matching of G. We are particularly interested in understanding the best approximation ratio possible by protocols that use a near-optimal message size of n ⋅ polylog(n).The communication complexity of bipartite matching in this setting under an adversarial partitioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA'12] gave a rac{2} {3}-approximate protocol with O(n) communication and showed that this approximation is tight unless we allow more than a near-linear communication. The complexity of the robust version, i.e., with a random partitioning of the edges, however remains wide open. The best known protocol, implied by a very recent random-order streaming algorithm of the authors [ICALP'21], uses O(n log n) communication to obtain a (rac{2} {3} + e₀)-approximation for a constant e₀ ∼ 10^{-14}. The best known lower bound, on the other hand, leaves open the possibility of all the way up to even a (1-e)-approximation using near-linear communication for constant e > 0.In this work, we give a new protocol with a significantly better approximation. Particularly, our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol is based on a new notion of distribution-dependent sparsifiers which give a natural way of sparsifying graphs sampled from a known distribution. We then show how to lift the assumption on knowing the graph’s distribution via minimax theorems. We believe this is a particularly powerful method of designing communication protocols and might find further applications." @default.
- W3204098402 created "2021-10-11" @default.
- W3204098402 creator A5025934584 @default.
- W3204098402 creator A5060978295 @default.
- W3204098402 date "2021-09-01" @default.
- W3204098402 modified "2023-09-26" @default.
- W3204098402 title "On the Robust Communication Complexity of Bipartite Matching" @default.
- W3204098402 cites W1482905650 @default.
- W3204098402 cites W1595640791 @default.
- W3204098402 cites W1639030016 @default.
- W3204098402 cites W1991253503 @default.
- W3204098402 cites W2002501531 @default.
- W3204098402 cites W2021016639 @default.
- W3204098402 cites W2051540665 @default.
- W3204098402 cites W2088263428 @default.
- W3204098402 cites W2157529519 @default.
- W3204098402 cites W2165753192 @default.
- W3204098402 cites W2174446922 @default.
- W3204098402 cites W2258899852 @default.
- W3204098402 cites W2261727491 @default.
- W3204098402 cites W2294952190 @default.
- W3204098402 cites W2492999734 @default.
- W3204098402 cites W2569757174 @default.
- W3204098402 cites W2617896681 @default.
- W3204098402 cites W2889431167 @default.
- W3204098402 cites W2897032526 @default.
- W3204098402 cites W2962710457 @default.
- W3204098402 cites W3002823730 @default.
- W3204098402 cites W3035186030 @default.
- W3204098402 cites W3037335885 @default.
- W3204098402 cites W3046669889 @default.
- W3204098402 cites W3114238887 @default.
- W3204098402 cites W3126291939 @default.
- W3204098402 cites W853930207 @default.
- W3204098402 doi "https://doi.org/10.4230/lipics.approx/random.2021.48" @default.
- W3204098402 hasPublicationYear "2021" @default.
- W3204098402 type Work @default.
- W3204098402 sameAs 3204098402 @default.
- W3204098402 citedByCount "0" @default.
- W3204098402 crossrefType "proceedings-article" @default.
- W3204098402 hasAuthorship W3204098402A5025934584 @default.
- W3204098402 hasAuthorship W3204098402A5060978295 @default.
- W3204098402 hasConcept C105795698 @default.
- W3204098402 hasConcept C11413529 @default.
- W3204098402 hasConcept C114614502 @default.
- W3204098402 hasConcept C118615104 @default.
- W3204098402 hasConcept C127964579 @default.
- W3204098402 hasConcept C132525143 @default.
- W3204098402 hasConcept C134306372 @default.
- W3204098402 hasConcept C148764684 @default.
- W3204098402 hasConcept C165064840 @default.
- W3204098402 hasConcept C179145077 @default.
- W3204098402 hasConcept C179799912 @default.
- W3204098402 hasConcept C197657726 @default.
- W3204098402 hasConcept C199360897 @default.
- W3204098402 hasConcept C2777027219 @default.
- W3204098402 hasConcept C2778222013 @default.
- W3204098402 hasConcept C33923547 @default.
- W3204098402 hasConcept C41008148 @default.
- W3204098402 hasConcept C63553672 @default.
- W3204098402 hasConcept C77553402 @default.
- W3204098402 hasConcept C80899671 @default.
- W3204098402 hasConceptScore W3204098402C105795698 @default.
- W3204098402 hasConceptScore W3204098402C11413529 @default.
- W3204098402 hasConceptScore W3204098402C114614502 @default.
- W3204098402 hasConceptScore W3204098402C118615104 @default.
- W3204098402 hasConceptScore W3204098402C127964579 @default.
- W3204098402 hasConceptScore W3204098402C132525143 @default.
- W3204098402 hasConceptScore W3204098402C134306372 @default.
- W3204098402 hasConceptScore W3204098402C148764684 @default.
- W3204098402 hasConceptScore W3204098402C165064840 @default.
- W3204098402 hasConceptScore W3204098402C179145077 @default.
- W3204098402 hasConceptScore W3204098402C179799912 @default.
- W3204098402 hasConceptScore W3204098402C197657726 @default.
- W3204098402 hasConceptScore W3204098402C199360897 @default.
- W3204098402 hasConceptScore W3204098402C2777027219 @default.
- W3204098402 hasConceptScore W3204098402C2778222013 @default.
- W3204098402 hasConceptScore W3204098402C33923547 @default.
- W3204098402 hasConceptScore W3204098402C41008148 @default.
- W3204098402 hasConceptScore W3204098402C63553672 @default.
- W3204098402 hasConceptScore W3204098402C77553402 @default.
- W3204098402 hasConceptScore W3204098402C80899671 @default.
- W3204098402 hasLocation W32040984021 @default.
- W3204098402 hasOpenAccess W3204098402 @default.
- W3204098402 hasPrimaryLocation W32040984021 @default.
- W3204098402 hasRelatedWork W1488505440 @default.
- W3204098402 hasRelatedWork W1537954077 @default.
- W3204098402 hasRelatedWork W1639030016 @default.
- W3204098402 hasRelatedWork W2078825942 @default.
- W3204098402 hasRelatedWork W209373873 @default.
- W3204098402 hasRelatedWork W2131263991 @default.
- W3204098402 hasRelatedWork W2134146845 @default.
- W3204098402 hasRelatedWork W2155704505 @default.
- W3204098402 hasRelatedWork W2505516498 @default.
- W3204098402 hasRelatedWork W2608553328 @default.
- W3204098402 hasRelatedWork W2897485334 @default.
- W3204098402 hasRelatedWork W2963621431 @default.
- W3204098402 hasRelatedWork W2964336535 @default.
- W3204098402 hasRelatedWork W3002823730 @default.