Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204102077> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3204102077 abstract "A smart city is an idea that is realized by the computing of a large amount of data collected through sensors, cameras, and other electronic methods to provide services, manage resources and solve daily life problems. The transformation of the conventional grid to a smart grid is one step in the direction towards smart city realization. An electric grid is composed of control stations, generation centres, transformers, communication lines, and distributors, which helps in transferring power from the power station to domestic and commercial consumers. Present electric grids are not smart enough that they can estimate the varying power requirement of the consumer. Also, these conventional grids are not enough robust and scalable. This has become the motivation for shifting from a conventional grid to a smart grid. The smart grid is a kind of power grid, which is robust and adapts itself to the varying needs of the consumer and self-healing in nature. In this way, the transformation from a conventional grid to a smart grid will help the government to make a smart city. The emergence of machine learning has helped in the prediction of the stability of the grid under the dynamically changing requirement of the consumer. Also, the usage of a variety of sensors will help in the collection of real-time consumption data. Through machine learning algorithms, we can gain an insight view of the collected data. This has helped the smart grid to convert into a robust smart grid, as this will help in avoiding the situation of failure. In this work, the authors have applied logistic regression, decision tree, support vector machine, linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, random forest, and k-nearest neighbour algorithms to predict the stability of the grid. The authors have used the smart grid stability dataset freely available on Kaggle to train and test the models. It has been found that a model designed using the support vector machine algorithm has given the most accurate result." @default.
- W3204102077 created "2021-10-11" @default.
- W3204102077 creator A5003175617 @default.
- W3204102077 creator A5007107453 @default.
- W3204102077 creator A5009372635 @default.
- W3204102077 creator A5060033388 @default.
- W3204102077 creator A5070257444 @default.
- W3204102077 creator A5081760268 @default.
- W3204102077 creator A5087928099 @default.
- W3204102077 date "2021-09-27" @default.
- W3204102077 modified "2023-10-03" @default.
- W3204102077 title "Machine learning‐based model for prediction of power consumption in smart grid‐ smart way towards smart city" @default.
- W3204102077 cites W2008668719 @default.
- W3204102077 cites W2560516744 @default.
- W3204102077 cites W2742552281 @default.
- W3204102077 cites W2765926089 @default.
- W3204102077 cites W2767507316 @default.
- W3204102077 cites W2786886927 @default.
- W3204102077 cites W2887347274 @default.
- W3204102077 cites W2906800119 @default.
- W3204102077 cites W2907560147 @default.
- W3204102077 cites W2914057541 @default.
- W3204102077 cites W2995005774 @default.
- W3204102077 cites W3000399655 @default.
- W3204102077 cites W3007150961 @default.
- W3204102077 cites W3008811585 @default.
- W3204102077 cites W3014649138 @default.
- W3204102077 cites W3016028012 @default.
- W3204102077 cites W3023328046 @default.
- W3204102077 cites W3025689783 @default.
- W3204102077 cites W3110845143 @default.
- W3204102077 cites W3122227093 @default.
- W3204102077 cites W3151550795 @default.
- W3204102077 cites W3158794384 @default.
- W3204102077 cites W4236012099 @default.
- W3204102077 doi "https://doi.org/10.1111/exsy.12832" @default.
- W3204102077 hasPublicationYear "2021" @default.
- W3204102077 type Work @default.
- W3204102077 sameAs 3204102077 @default.
- W3204102077 citedByCount "13" @default.
- W3204102077 countsByYear W32041020772022 @default.
- W3204102077 countsByYear W32041020772023 @default.
- W3204102077 crossrefType "journal-article" @default.
- W3204102077 hasAuthorship W3204102077A5003175617 @default.
- W3204102077 hasAuthorship W3204102077A5007107453 @default.
- W3204102077 hasAuthorship W3204102077A5009372635 @default.
- W3204102077 hasAuthorship W3204102077A5060033388 @default.
- W3204102077 hasAuthorship W3204102077A5070257444 @default.
- W3204102077 hasAuthorship W3204102077A5081760268 @default.
- W3204102077 hasAuthorship W3204102077A5087928099 @default.
- W3204102077 hasConcept C10558101 @default.
- W3204102077 hasConcept C119599485 @default.
- W3204102077 hasConcept C120314980 @default.
- W3204102077 hasConcept C127413603 @default.
- W3204102077 hasConcept C187691185 @default.
- W3204102077 hasConcept C206658404 @default.
- W3204102077 hasConcept C2524010 @default.
- W3204102077 hasConcept C2779438525 @default.
- W3204102077 hasConcept C33923547 @default.
- W3204102077 hasConcept C41008148 @default.
- W3204102077 hasConcept C48044578 @default.
- W3204102077 hasConcept C77088390 @default.
- W3204102077 hasConceptScore W3204102077C10558101 @default.
- W3204102077 hasConceptScore W3204102077C119599485 @default.
- W3204102077 hasConceptScore W3204102077C120314980 @default.
- W3204102077 hasConceptScore W3204102077C127413603 @default.
- W3204102077 hasConceptScore W3204102077C187691185 @default.
- W3204102077 hasConceptScore W3204102077C206658404 @default.
- W3204102077 hasConceptScore W3204102077C2524010 @default.
- W3204102077 hasConceptScore W3204102077C2779438525 @default.
- W3204102077 hasConceptScore W3204102077C33923547 @default.
- W3204102077 hasConceptScore W3204102077C41008148 @default.
- W3204102077 hasConceptScore W3204102077C48044578 @default.
- W3204102077 hasConceptScore W3204102077C77088390 @default.
- W3204102077 hasIssue "5" @default.
- W3204102077 hasLocation W32041020771 @default.
- W3204102077 hasOpenAccess W3204102077 @default.
- W3204102077 hasPrimaryLocation W32041020771 @default.
- W3204102077 hasRelatedWork W1596201972 @default.
- W3204102077 hasRelatedWork W1767718647 @default.
- W3204102077 hasRelatedWork W1788737569 @default.
- W3204102077 hasRelatedWork W1986253068 @default.
- W3204102077 hasRelatedWork W2160425906 @default.
- W3204102077 hasRelatedWork W2364921833 @default.
- W3204102077 hasRelatedWork W2367503426 @default.
- W3204102077 hasRelatedWork W2380963126 @default.
- W3204102077 hasRelatedWork W2385146268 @default.
- W3204102077 hasRelatedWork W2542091226 @default.
- W3204102077 hasVolume "39" @default.
- W3204102077 isParatext "false" @default.
- W3204102077 isRetracted "false" @default.
- W3204102077 magId "3204102077" @default.
- W3204102077 workType "article" @default.