Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204102962> ?p ?o ?g. }
- W3204102962 abstract "A networked time series (NETS) is a family of time series on a given graph, one for each node. It has a wide range of applications from intelligent transportation, environment monitoring to smart grid management. An important task in such applications is to predict the future values of a NETS based on its historical values and the underlying graph. Most existing methods require complete data for training. However, in real-world scenarios, it is not uncommon to have missing data due to sensor malfunction, incomplete sensing coverage, etc. In this paper, we study the problem of NETS prediction with incomplete data. We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future. Furthermore, we propose Graph Temporal Attention Networks, which incorporate the attention mechanism to capture both inter-time series and temporal correlations. We conduct extensive experiments on four real-world datasets under different missing patterns and missing rates. The experimental results show that NETS-ImpGAN outperforms existing methods, reducing the MAE by up to 25%." @default.
- W3204102962 created "2021-10-11" @default.
- W3204102962 creator A5018994556 @default.
- W3204102962 creator A5025298492 @default.
- W3204102962 creator A5034260039 @default.
- W3204102962 creator A5034483183 @default.
- W3204102962 creator A5079865276 @default.
- W3204102962 creator A5087534120 @default.
- W3204102962 date "2021-10-05" @default.
- W3204102962 modified "2023-09-24" @default.
- W3204102962 title "Networked Time Series Prediction with Incomplete Data" @default.
- W3204102962 cites W1498436455 @default.
- W3204102962 cites W1901129140 @default.
- W3204102962 cites W1959608418 @default.
- W3204102962 cites W2000942133 @default.
- W3204102962 cites W2044758663 @default.
- W3204102962 cites W2064675550 @default.
- W3204102962 cites W2099471712 @default.
- W3204102962 cites W2117671523 @default.
- W3204102962 cites W2131774270 @default.
- W3204102962 cites W2157331557 @default.
- W3204102962 cites W2408316103 @default.
- W3204102962 cites W2528639018 @default.
- W3204102962 cites W2626778328 @default.
- W3204102962 cites W2739748921 @default.
- W3204102962 cites W2890686416 @default.
- W3204102962 cites W2894458036 @default.
- W3204102962 cites W2904449562 @default.
- W3204102962 cites W2904832339 @default.
- W3204102962 cites W2907941610 @default.
- W3204102962 cites W2962810718 @default.
- W3204102962 cites W2963258546 @default.
- W3204102962 cites W2963265008 @default.
- W3204102962 cites W2963275229 @default.
- W3204102962 cites W2963358464 @default.
- W3204102962 cites W2963858333 @default.
- W3204102962 cites W2963925452 @default.
- W3204102962 cites W2964015378 @default.
- W3204102962 cites W2964244673 @default.
- W3204102962 cites W2965341826 @default.
- W3204102962 cites W2965806703 @default.
- W3204102962 cites W2997311100 @default.
- W3204102962 cites W3009011741 @default.
- W3204102962 cites W3034473101 @default.
- W3204102962 cites W3035580605 @default.
- W3204102962 cites W3093639344 @default.
- W3204102962 cites W3103720336 @default.
- W3204102962 cites W3155683369 @default.
- W3204102962 cites W3161226789 @default.
- W3204102962 cites W3202811093 @default.
- W3204102962 doi "https://doi.org/10.48550/arxiv.2110.02271" @default.
- W3204102962 hasPublicationYear "2021" @default.
- W3204102962 type Work @default.
- W3204102962 sameAs 3204102962 @default.
- W3204102962 citedByCount "0" @default.
- W3204102962 crossrefType "posted-content" @default.
- W3204102962 hasAuthorship W3204102962A5018994556 @default.
- W3204102962 hasAuthorship W3204102962A5025298492 @default.
- W3204102962 hasAuthorship W3204102962A5034260039 @default.
- W3204102962 hasAuthorship W3204102962A5034483183 @default.
- W3204102962 hasAuthorship W3204102962A5079865276 @default.
- W3204102962 hasAuthorship W3204102962A5087534120 @default.
- W3204102962 hasBestOaLocation W32041029621 @default.
- W3204102962 hasConcept C108583219 @default.
- W3204102962 hasConcept C119857082 @default.
- W3204102962 hasConcept C124101348 @default.
- W3204102962 hasConcept C127413603 @default.
- W3204102962 hasConcept C132525143 @default.
- W3204102962 hasConcept C143724316 @default.
- W3204102962 hasConcept C151406439 @default.
- W3204102962 hasConcept C151730666 @default.
- W3204102962 hasConcept C154945302 @default.
- W3204102962 hasConcept C201995342 @default.
- W3204102962 hasConcept C2780451532 @default.
- W3204102962 hasConcept C41008148 @default.
- W3204102962 hasConcept C80444323 @default.
- W3204102962 hasConcept C86803240 @default.
- W3204102962 hasConcept C9357733 @default.
- W3204102962 hasConceptScore W3204102962C108583219 @default.
- W3204102962 hasConceptScore W3204102962C119857082 @default.
- W3204102962 hasConceptScore W3204102962C124101348 @default.
- W3204102962 hasConceptScore W3204102962C127413603 @default.
- W3204102962 hasConceptScore W3204102962C132525143 @default.
- W3204102962 hasConceptScore W3204102962C143724316 @default.
- W3204102962 hasConceptScore W3204102962C151406439 @default.
- W3204102962 hasConceptScore W3204102962C151730666 @default.
- W3204102962 hasConceptScore W3204102962C154945302 @default.
- W3204102962 hasConceptScore W3204102962C201995342 @default.
- W3204102962 hasConceptScore W3204102962C2780451532 @default.
- W3204102962 hasConceptScore W3204102962C41008148 @default.
- W3204102962 hasConceptScore W3204102962C80444323 @default.
- W3204102962 hasConceptScore W3204102962C86803240 @default.
- W3204102962 hasConceptScore W3204102962C9357733 @default.
- W3204102962 hasLocation W32041029621 @default.
- W3204102962 hasOpenAccess W3204102962 @default.
- W3204102962 hasPrimaryLocation W32041029621 @default.
- W3204102962 hasRelatedWork W3014300295 @default.
- W3204102962 hasRelatedWork W3164822677 @default.
- W3204102962 hasRelatedWork W4213225422 @default.
- W3204102962 hasRelatedWork W4223943233 @default.