Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204109688> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3204109688 endingPage "109374" @default.
- W3204109688 startingPage "109374" @default.
- W3204109688 abstract "In the Gaussian graphical model framework, precision matrices reveal conditional dependence structure among random variables. In functional magnetic resonance imaging (fMRI) data, estimating such precision matrices of multi-subjects and aggregating them to a group-level is an essential step for constructing a group brain network.In this article, we considered joint estimation of multiple precision matrices with regularized aggregation. Also, in the construction of a group precision matrix, we integrated robust aggregation to the estimation. In the estimation of individual precision matrices, we took a regularization approach to induce sparsity, which made brain network estimation more realistic.We demonstrated the effectiveness of the proposed method through simulated examples, and analyses on real fMRI data acquired during eye movement tasks assessing cognitive control. For the fMRI data, the joint estimation of multiple precision matrices (JEMP) with regularized aggregation (RA) captured more robust associations between task-relevant neural regions of interest (ROIs), compared to the analyses using JEMP alone. The JEMP with RA also was sensitive to increased neural efficiency after task practice.The simple average of individual precision matrices may be affected by outliers and provide inconsistent outcomes between subject-level and group-level networks. In contrast, the proposed method yielded a robust group graph that could identify and ease the effect of outliers.The proposed method identified regions of practice-induced attenuation associated with reduced cognitive demand after repeat task exposure. Through simulated and real data, we demonstrated that this method does not require any distribution assumption, can identify outliers, and provides robust, representative group brain networks. This method can be applied to datasets that have extensive variability and/or multiple outliers, including applications to specific, and general, cognitive processes, as well as for studies that may require longitudinal data, such as pharmaceutical trials." @default.
- W3204109688 created "2021-10-11" @default.
- W3204109688 creator A5064907804 @default.
- W3204109688 creator A5070128724 @default.
- W3204109688 creator A5082180230 @default.
- W3204109688 creator A5084912635 @default.
- W3204109688 date "2021-12-01" @default.
- W3204109688 modified "2023-10-13" @default.
- W3204109688 title "Joint estimation and regularized aggregation of brain network in FMRI data" @default.
- W3204109688 cites W1989727964 @default.
- W3204109688 cites W2010631770 @default.
- W3204109688 cites W2062962812 @default.
- W3204109688 cites W2071714163 @default.
- W3204109688 cites W2079195815 @default.
- W3204109688 cites W2081746825 @default.
- W3204109688 cites W2103907386 @default.
- W3204109688 cites W2106592748 @default.
- W3204109688 cites W2114682096 @default.
- W3204109688 cites W2125664909 @default.
- W3204109688 cites W2132555912 @default.
- W3204109688 cites W2136021618 @default.
- W3204109688 cites W2148934434 @default.
- W3204109688 cites W2150023439 @default.
- W3204109688 cites W2163707651 @default.
- W3204109688 cites W2165009258 @default.
- W3204109688 cites W2520892872 @default.
- W3204109688 cites W2524070496 @default.
- W3204109688 cites W2556653490 @default.
- W3204109688 cites W2742973403 @default.
- W3204109688 cites W2760713876 @default.
- W3204109688 cites W2808185111 @default.
- W3204109688 cites W2889919105 @default.
- W3204109688 cites W3098834468 @default.
- W3204109688 cites W3103368540 @default.
- W3204109688 cites W4235499294 @default.
- W3204109688 cites W4293052541 @default.
- W3204109688 doi "https://doi.org/10.1016/j.jneumeth.2021.109374" @default.
- W3204109688 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34600917" @default.
- W3204109688 hasPublicationYear "2021" @default.
- W3204109688 type Work @default.
- W3204109688 sameAs 3204109688 @default.
- W3204109688 citedByCount "2" @default.
- W3204109688 countsByYear W32041096882023 @default.
- W3204109688 crossrefType "journal-article" @default.
- W3204109688 hasAuthorship W3204109688A5064907804 @default.
- W3204109688 hasAuthorship W3204109688A5070128724 @default.
- W3204109688 hasAuthorship W3204109688A5082180230 @default.
- W3204109688 hasAuthorship W3204109688A5084912635 @default.
- W3204109688 hasBestOaLocation W32041096881 @default.
- W3204109688 hasConcept C119857082 @default.
- W3204109688 hasConcept C121332964 @default.
- W3204109688 hasConcept C153180895 @default.
- W3204109688 hasConcept C154945302 @default.
- W3204109688 hasConcept C15744967 @default.
- W3204109688 hasConcept C163716315 @default.
- W3204109688 hasConcept C169760540 @default.
- W3204109688 hasConcept C2779226451 @default.
- W3204109688 hasConcept C3018011982 @default.
- W3204109688 hasConcept C41008148 @default.
- W3204109688 hasConcept C62520636 @default.
- W3204109688 hasConcept C79337645 @default.
- W3204109688 hasConcept C97820695 @default.
- W3204109688 hasConceptScore W3204109688C119857082 @default.
- W3204109688 hasConceptScore W3204109688C121332964 @default.
- W3204109688 hasConceptScore W3204109688C153180895 @default.
- W3204109688 hasConceptScore W3204109688C154945302 @default.
- W3204109688 hasConceptScore W3204109688C15744967 @default.
- W3204109688 hasConceptScore W3204109688C163716315 @default.
- W3204109688 hasConceptScore W3204109688C169760540 @default.
- W3204109688 hasConceptScore W3204109688C2779226451 @default.
- W3204109688 hasConceptScore W3204109688C3018011982 @default.
- W3204109688 hasConceptScore W3204109688C41008148 @default.
- W3204109688 hasConceptScore W3204109688C62520636 @default.
- W3204109688 hasConceptScore W3204109688C79337645 @default.
- W3204109688 hasConceptScore W3204109688C97820695 @default.
- W3204109688 hasFunder F4320306076 @default.
- W3204109688 hasFunder F4320321408 @default.
- W3204109688 hasFunder F4320322120 @default.
- W3204109688 hasLocation W32041096881 @default.
- W3204109688 hasLocation W32041096882 @default.
- W3204109688 hasOpenAccess W3204109688 @default.
- W3204109688 hasPrimaryLocation W32041096881 @default.
- W3204109688 hasRelatedWork W1486338765 @default.
- W3204109688 hasRelatedWork W2023876576 @default.
- W3204109688 hasRelatedWork W2046456988 @default.
- W3204109688 hasRelatedWork W2074430941 @default.
- W3204109688 hasRelatedWork W2113096305 @default.
- W3204109688 hasRelatedWork W2357409937 @default.
- W3204109688 hasRelatedWork W2580722822 @default.
- W3204109688 hasRelatedWork W2772305933 @default.
- W3204109688 hasRelatedWork W3006513224 @default.
- W3204109688 hasRelatedWork W3197078253 @default.
- W3204109688 hasVolume "364" @default.
- W3204109688 isParatext "false" @default.
- W3204109688 isRetracted "false" @default.
- W3204109688 magId "3204109688" @default.
- W3204109688 workType "article" @default.