Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204109827> ?p ?o ?g. }
- W3204109827 endingPage "4887" @default.
- W3204109827 startingPage "4874" @default.
- W3204109827 abstract "Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs an effective intelligence framework to early recognition and discrimination of COVID-19 severity from the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks. Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification performance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics. The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all metrics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19 severity from the perspective of coagulation." @default.
- W3204109827 created "2021-10-11" @default.
- W3204109827 creator A5024138459 @default.
- W3204109827 creator A5028441474 @default.
- W3204109827 creator A5029589252 @default.
- W3204109827 creator A5029620144 @default.
- W3204109827 creator A5035145736 @default.
- W3204109827 creator A5035499884 @default.
- W3204109827 creator A5062760441 @default.
- W3204109827 creator A5065499122 @default.
- W3204109827 creator A5070313706 @default.
- W3204109827 date "2022-09-01" @default.
- W3204109827 modified "2023-10-14" @default.
- W3204109827 title "Analysis of COVID-19 severity from the perspective of coagulation index using evolutionary machine learning with enhanced brain storm optimization" @default.
- W3204109827 cites W1786686177 @default.
- W3204109827 cites W1811310034 @default.
- W3204109827 cites W1813780612 @default.
- W3204109827 cites W1901616594 @default.
- W3204109827 cites W1965275931 @default.
- W3204109827 cites W1981904722 @default.
- W3204109827 cites W2011371124 @default.
- W3204109827 cites W2012459362 @default.
- W3204109827 cites W2017522944 @default.
- W3204109827 cites W2030912027 @default.
- W3204109827 cites W2070654153 @default.
- W3204109827 cites W2071899373 @default.
- W3204109827 cites W2072955302 @default.
- W3204109827 cites W2081873429 @default.
- W3204109827 cites W2084581746 @default.
- W3204109827 cites W2085514593 @default.
- W3204109827 cites W2114421929 @default.
- W3204109827 cites W2143451019 @default.
- W3204109827 cites W2161476684 @default.
- W3204109827 cites W2162363668 @default.
- W3204109827 cites W2170500525 @default.
- W3204109827 cites W2232748179 @default.
- W3204109827 cites W2296432816 @default.
- W3204109827 cites W2517600007 @default.
- W3204109827 cites W2525984666 @default.
- W3204109827 cites W2582636227 @default.
- W3204109827 cites W2608849329 @default.
- W3204109827 cites W2613771876 @default.
- W3204109827 cites W2735368442 @default.
- W3204109827 cites W2735817878 @default.
- W3204109827 cites W2757828535 @default.
- W3204109827 cites W2765169965 @default.
- W3204109827 cites W2788633781 @default.
- W3204109827 cites W2802292836 @default.
- W3204109827 cites W2808701618 @default.
- W3204109827 cites W2809169054 @default.
- W3204109827 cites W2884986852 @default.
- W3204109827 cites W2886040364 @default.
- W3204109827 cites W2890581334 @default.
- W3204109827 cites W2900694973 @default.
- W3204109827 cites W2901864827 @default.
- W3204109827 cites W2904843285 @default.
- W3204109827 cites W2910443141 @default.
- W3204109827 cites W2919979744 @default.
- W3204109827 cites W2934399013 @default.
- W3204109827 cites W2942406509 @default.
- W3204109827 cites W2946361138 @default.
- W3204109827 cites W2947678382 @default.
- W3204109827 cites W2952162556 @default.
- W3204109827 cites W2962004477 @default.
- W3204109827 cites W2975524970 @default.
- W3204109827 cites W2976711637 @default.
- W3204109827 cites W2981134806 @default.
- W3204109827 cites W2981979847 @default.
- W3204109827 cites W2990991805 @default.
- W3204109827 cites W2997355859 @default.
- W3204109827 cites W3002108456 @default.
- W3204109827 cites W3003668884 @default.
- W3204109827 cites W3003790823 @default.
- W3204109827 cites W3006485704 @default.
- W3204109827 cites W3008461878 @default.
- W3204109827 cites W3009876049 @default.
- W3204109827 cites W3011794532 @default.
- W3204109827 cites W3012849736 @default.
- W3204109827 cites W3013482090 @default.
- W3204109827 cites W3013632036 @default.
- W3204109827 cites W3014974411 @default.
- W3204109827 cites W3016427037 @default.
- W3204109827 cites W3016888800 @default.
- W3204109827 cites W3017403618 @default.
- W3204109827 cites W3021303430 @default.
- W3204109827 cites W3021654843 @default.
- W3204109827 cites W3022209103 @default.
- W3204109827 cites W3030723095 @default.
- W3204109827 cites W3031443331 @default.
- W3204109827 cites W3033606965 @default.
- W3204109827 cites W3033710648 @default.
- W3204109827 cites W3040299034 @default.
- W3204109827 cites W3040806238 @default.
- W3204109827 cites W3041868507 @default.
- W3204109827 cites W3042147498 @default.
- W3204109827 cites W3043165726 @default.
- W3204109827 cites W3048820656 @default.
- W3204109827 cites W3084632828 @default.