Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204117816> ?p ?o ?g. }
- W3204117816 endingPage "3736" @default.
- W3204117816 startingPage "3736" @default.
- W3204117816 abstract "The role of forests is increasing because of rapid land use changes worldwide that have implications on ecosystems and the carbon cycle. Therefore, it is necessary to obtain accurate information about forests and build forest inventories. However, it is difficult to assess the internal structure of the forest through 2D remote sensing techniques and fieldwork. In this aspect, we proposed a method for estimating the vertical structure of forests based on full-waveform light detection and ranging (FW LiDAR) data in this study. Voxel-based tree point density maps were generated by estimating the number of canopy height points in each voxel grid from the raster digital terrain model (DTM) and canopy height points after pre-processing the LiDAR point clouds. We applied an unsupervised classification algorithm to the voxel-based tree point density maps and identified seven classes by profile pattern analysis for the forest vertical types. The classification accuracy was found to be 72.73% from the validation from 11 field investigation sites, which was additionally confirmed through comparative analysis with aerial images. Based on this pre-classification reference map, which is assumed to be ground truths, the deep neural network (DNN) model was finally applied to perform the final classification. As a result of accuracy assessment, it showed accuracy of 92.72% with a good performance. These results demonstrate the potential of vertical structure estimation for extensive forests using FW LiDAR data and that the distinction between one-storied and two-storied forests can be clearly represented. This technique is expected to contribute to efficient and effective management of forests based on accurate information derived from the proposed method." @default.
- W3204117816 created "2021-10-11" @default.
- W3204117816 creator A5040012035 @default.
- W3204117816 creator A5059147004 @default.
- W3204117816 creator A5064122022 @default.
- W3204117816 creator A5074700953 @default.
- W3204117816 date "2021-09-17" @default.
- W3204117816 modified "2023-10-16" @default.
- W3204117816 title "Mapping Forest Vertical Structure in Sogwang-ri Forest from Full-Waveform Lidar Point Clouds Using Deep Neural Network" @default.
- W3204117816 cites W1180868283 @default.
- W3204117816 cites W1825103873 @default.
- W3204117816 cites W1968601348 @default.
- W3204117816 cites W1969607685 @default.
- W3204117816 cites W1971997642 @default.
- W3204117816 cites W1975417404 @default.
- W3204117816 cites W2012519352 @default.
- W3204117816 cites W2022224360 @default.
- W3204117816 cites W2040120109 @default.
- W3204117816 cites W2060983504 @default.
- W3204117816 cites W2061402027 @default.
- W3204117816 cites W2070608504 @default.
- W3204117816 cites W2076712994 @default.
- W3204117816 cites W2098919237 @default.
- W3204117816 cites W2100524057 @default.
- W3204117816 cites W2100565143 @default.
- W3204117816 cites W2101907415 @default.
- W3204117816 cites W2105447517 @default.
- W3204117816 cites W2119884476 @default.
- W3204117816 cites W2137933418 @default.
- W3204117816 cites W2153054285 @default.
- W3204117816 cites W2164198104 @default.
- W3204117816 cites W2166321939 @default.
- W3204117816 cites W2600603483 @default.
- W3204117816 cites W2632836307 @default.
- W3204117816 cites W2740096877 @default.
- W3204117816 cites W2741402613 @default.
- W3204117816 cites W2795563321 @default.
- W3204117816 cites W2899869235 @default.
- W3204117816 cites W2955388112 @default.
- W3204117816 cites W2969634177 @default.
- W3204117816 cites W2971892668 @default.
- W3204117816 cites W3009844817 @default.
- W3204117816 cites W3010346756 @default.
- W3204117816 cites W3016391357 @default.
- W3204117816 cites W3042861622 @default.
- W3204117816 doi "https://doi.org/10.3390/rs13183736" @default.
- W3204117816 hasPublicationYear "2021" @default.
- W3204117816 type Work @default.
- W3204117816 sameAs 3204117816 @default.
- W3204117816 citedByCount "6" @default.
- W3204117816 countsByYear W32041178162023 @default.
- W3204117816 crossrefType "journal-article" @default.
- W3204117816 hasAuthorship W3204117816A5040012035 @default.
- W3204117816 hasAuthorship W3204117816A5059147004 @default.
- W3204117816 hasAuthorship W3204117816A5064122022 @default.
- W3204117816 hasAuthorship W3204117816A5074700953 @default.
- W3204117816 hasBestOaLocation W32041178161 @default.
- W3204117816 hasConcept C101000010 @default.
- W3204117816 hasConcept C115051666 @default.
- W3204117816 hasConcept C131979681 @default.
- W3204117816 hasConcept C147103442 @default.
- W3204117816 hasConcept C154945302 @default.
- W3204117816 hasConcept C161840515 @default.
- W3204117816 hasConcept C166957645 @default.
- W3204117816 hasConcept C181843262 @default.
- W3204117816 hasConcept C181844469 @default.
- W3204117816 hasConcept C205649164 @default.
- W3204117816 hasConcept C28631016 @default.
- W3204117816 hasConcept C41008148 @default.
- W3204117816 hasConcept C51399673 @default.
- W3204117816 hasConcept C58640448 @default.
- W3204117816 hasConcept C62649853 @default.
- W3204117816 hasConcept C76155785 @default.
- W3204117816 hasConcept C97137747 @default.
- W3204117816 hasConceptScore W3204117816C101000010 @default.
- W3204117816 hasConceptScore W3204117816C115051666 @default.
- W3204117816 hasConceptScore W3204117816C131979681 @default.
- W3204117816 hasConceptScore W3204117816C147103442 @default.
- W3204117816 hasConceptScore W3204117816C154945302 @default.
- W3204117816 hasConceptScore W3204117816C161840515 @default.
- W3204117816 hasConceptScore W3204117816C166957645 @default.
- W3204117816 hasConceptScore W3204117816C181843262 @default.
- W3204117816 hasConceptScore W3204117816C181844469 @default.
- W3204117816 hasConceptScore W3204117816C205649164 @default.
- W3204117816 hasConceptScore W3204117816C28631016 @default.
- W3204117816 hasConceptScore W3204117816C41008148 @default.
- W3204117816 hasConceptScore W3204117816C51399673 @default.
- W3204117816 hasConceptScore W3204117816C58640448 @default.
- W3204117816 hasConceptScore W3204117816C62649853 @default.
- W3204117816 hasConceptScore W3204117816C76155785 @default.
- W3204117816 hasConceptScore W3204117816C97137747 @default.
- W3204117816 hasFunder F4320322120 @default.
- W3204117816 hasIssue "18" @default.
- W3204117816 hasLocation W32041178161 @default.
- W3204117816 hasLocation W32041178162 @default.
- W3204117816 hasOpenAccess W3204117816 @default.
- W3204117816 hasPrimaryLocation W32041178161 @default.
- W3204117816 hasRelatedWork W1639545646 @default.