Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204124166> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3204124166 abstract "We explore the feasibility of combining Graph Neural Network-based policy architectures with Deep Reinforcement Learning as an approach to problems in systems. This fits particularly well with operations on networks, which naturally take the form of graphs. As a case study, we take the idea of data-driven routing in intradomain traffic engineering, whereby the routing of data in a network can be managed taking into account the data itself. The particular subproblem which we examine is minimising link congestion in networks using knowledge of historic traffic flows. We show through experiments that an approach using Graph Neural Networks (GNNs) performs at least as well as previous work using Multilayer Perceptron architectures. GNNs have the added benefit that they allow for the generalisation of trained agents to different network topologies with no extra work. Furthermore, we believe that this technique is applicable to a far wider selection of problems in systems research." @default.
- W3204124166 created "2021-10-11" @default.
- W3204124166 creator A5027521186 @default.
- W3204124166 creator A5063536695 @default.
- W3204124166 date "2021-07-01" @default.
- W3204124166 modified "2023-10-17" @default.
- W3204124166 title "GDDR: GNN-based Data-Driven Routing" @default.
- W3204124166 cites W169449760 @default.
- W3204124166 cites W1971443646 @default.
- W3204124166 cites W2100218206 @default.
- W3204124166 cites W2116341502 @default.
- W3204124166 cites W2118404561 @default.
- W3204124166 cites W2137983211 @default.
- W3204124166 cites W2145818650 @default.
- W3204124166 cites W2163907500 @default.
- W3204124166 cites W2768254111 @default.
- W3204124166 cites W2886028279 @default.
- W3204124166 cites W2913856657 @default.
- W3204124166 cites W2943717074 @default.
- W3204124166 cites W3009317493 @default.
- W3204124166 cites W3046046019 @default.
- W3204124166 doi "https://doi.org/10.1109/icdcs51616.2021.00056" @default.
- W3204124166 hasPublicationYear "2021" @default.
- W3204124166 type Work @default.
- W3204124166 sameAs 3204124166 @default.
- W3204124166 citedByCount "3" @default.
- W3204124166 countsByYear W32041241662022 @default.
- W3204124166 countsByYear W32041241662023 @default.
- W3204124166 crossrefType "proceedings-article" @default.
- W3204124166 hasAuthorship W3204124166A5027521186 @default.
- W3204124166 hasAuthorship W3204124166A5063536695 @default.
- W3204124166 hasBestOaLocation W32041241662 @default.
- W3204124166 hasConcept C104954878 @default.
- W3204124166 hasConcept C119857082 @default.
- W3204124166 hasConcept C120314980 @default.
- W3204124166 hasConcept C132525143 @default.
- W3204124166 hasConcept C154945302 @default.
- W3204124166 hasConcept C184896649 @default.
- W3204124166 hasConcept C199845137 @default.
- W3204124166 hasConcept C31258907 @default.
- W3204124166 hasConcept C41008148 @default.
- W3204124166 hasConcept C50644808 @default.
- W3204124166 hasConcept C74172769 @default.
- W3204124166 hasConcept C80444323 @default.
- W3204124166 hasConcept C94600068 @default.
- W3204124166 hasConcept C97541855 @default.
- W3204124166 hasConceptScore W3204124166C104954878 @default.
- W3204124166 hasConceptScore W3204124166C119857082 @default.
- W3204124166 hasConceptScore W3204124166C120314980 @default.
- W3204124166 hasConceptScore W3204124166C132525143 @default.
- W3204124166 hasConceptScore W3204124166C154945302 @default.
- W3204124166 hasConceptScore W3204124166C184896649 @default.
- W3204124166 hasConceptScore W3204124166C199845137 @default.
- W3204124166 hasConceptScore W3204124166C31258907 @default.
- W3204124166 hasConceptScore W3204124166C41008148 @default.
- W3204124166 hasConceptScore W3204124166C50644808 @default.
- W3204124166 hasConceptScore W3204124166C74172769 @default.
- W3204124166 hasConceptScore W3204124166C80444323 @default.
- W3204124166 hasConceptScore W3204124166C94600068 @default.
- W3204124166 hasConceptScore W3204124166C97541855 @default.
- W3204124166 hasFunder F4320313467 @default.
- W3204124166 hasLocation W32041241661 @default.
- W3204124166 hasLocation W32041241662 @default.
- W3204124166 hasLocation W32041241663 @default.
- W3204124166 hasOpenAccess W3204124166 @default.
- W3204124166 hasPrimaryLocation W32041241661 @default.
- W3204124166 hasRelatedWork W2012571605 @default.
- W3204124166 hasRelatedWork W207975064 @default.
- W3204124166 hasRelatedWork W2099283075 @default.
- W3204124166 hasRelatedWork W2130199099 @default.
- W3204124166 hasRelatedWork W2154602463 @default.
- W3204124166 hasRelatedWork W2365493740 @default.
- W3204124166 hasRelatedWork W2994918331 @default.
- W3204124166 hasRelatedWork W32641163 @default.
- W3204124166 hasRelatedWork W4319083788 @default.
- W3204124166 hasRelatedWork W2531163808 @default.
- W3204124166 isParatext "false" @default.
- W3204124166 isRetracted "false" @default.
- W3204124166 magId "3204124166" @default.
- W3204124166 workType "article" @default.