Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204124655> ?p ?o ?g. }
- W3204124655 endingPage "10048" @default.
- W3204124655 startingPage "10048" @default.
- W3204124655 abstract "Online mental health information represents important resources for people living with mental health issues. Suitability of mental health information for effective self-care remains understudied, despite the increasing needs for more actionable mental health resources, especially among young people.We aimed to develop Bayesian machine learning classifiers as data-based decision aids for the assessment of the actionability of credible mental health information for people with mental health issues and diseases.We collected and classified creditable online health information on mental health issues into generic mental health (GEN) information and patient-specific (PAS) mental health information. GEN and PAS were both patient-oriented health resources developed by health authorities of mental health and public health promotion. GENs were non-classified online health information without indication of targeted readerships; PASs were developed purposefully for specific populations (young, elderly people, pregnant women, and men) as indicated by their website labels. To ensure the generalisability of our model, we chose to develop a sparse Bayesian machine learning classifier using Relevance Vector Machine (RVM).Using optimisation and normalisation techniques, we developed a best-performing classifier through joint optimisation of natural language features and min-max normalisation of feature frequencies. The AUC (0.957), sensitivity (0.900), and specificity (0.953) of the best model were statistically higher (p < 0.05) than other models using parallel optimisation of structural and semantic features with or without feature normalisation. We subsequently evaluated the diagnostic utility of our model in the clinic by comparing its positive (LR+) and negative likelihood ratios (LR-) and 95% confidence intervals (95% C.I.) as we adjusted the probability thresholds with the range of 0.1 and 0.9. We found that the best pair of LR+ (18.031, 95% C.I.: 10.992, 29.577) and LR- (0.100, 95% C.I.: 0.068, 0.148) was found when the probability threshold was set to 0.45 associated with a sensitivity of 0.905 (95%: 0.867, 0.942) and specificity of 0.950 (95% C.I.: 0.925, 0.975). These statistical properties of our model suggested its applicability in the clinic.Our study found that PAS had significant advantage over GEN mental health information regarding information actionability, engagement, and suitability for specific populations with distinct mental health issues. GEN is more suitable for general mental health information acquisition, whereas PAS can effectively engage patients and provide more effective and needed self-care support. The Bayesian machine learning classifier developed provided automatic tools to support decision making in the clinic to identify more actionable resources, effective to support self-care among different populations." @default.
- W3204124655 created "2021-10-11" @default.
- W3204124655 creator A5003904999 @default.
- W3204124655 creator A5012919870 @default.
- W3204124655 creator A5025441384 @default.
- W3204124655 creator A5067660587 @default.
- W3204124655 date "2021-09-24" @default.
- W3204124655 modified "2023-09-26" @default.
- W3204124655 title "Forecasting the Suitability of Online Mental Health Information for Effective Self-Care Developing Machine Learning Classifiers Using Natural Language Features" @default.
- W3204124655 cites W1648445109 @default.
- W3204124655 cites W1974528911 @default.
- W3204124655 cites W1982785291 @default.
- W3204124655 cites W2001011394 @default.
- W3204124655 cites W2003740803 @default.
- W3204124655 cites W2050599544 @default.
- W3204124655 cites W2056798598 @default.
- W3204124655 cites W2065763581 @default.
- W3204124655 cites W2068380169 @default.
- W3204124655 cites W2072293237 @default.
- W3204124655 cites W2077656994 @default.
- W3204124655 cites W2080419991 @default.
- W3204124655 cites W2110221483 @default.
- W3204124655 cites W2111334594 @default.
- W3204124655 cites W2114818762 @default.
- W3204124655 cites W2120480097 @default.
- W3204124655 cites W2121874627 @default.
- W3204124655 cites W2137195100 @default.
- W3204124655 cites W2137942961 @default.
- W3204124655 cites W2147288761 @default.
- W3204124655 cites W2158693921 @default.
- W3204124655 cites W2164448725 @default.
- W3204124655 cites W2165244071 @default.
- W3204124655 cites W2330959334 @default.
- W3204124655 cites W2398239109 @default.
- W3204124655 cites W2582664174 @default.
- W3204124655 cites W2733962922 @default.
- W3204124655 cites W2770221156 @default.
- W3204124655 cites W2792728788 @default.
- W3204124655 cites W2801453880 @default.
- W3204124655 cites W2903142714 @default.
- W3204124655 cites W2905898683 @default.
- W3204124655 cites W3014132131 @default.
- W3204124655 cites W3033190121 @default.
- W3204124655 doi "https://doi.org/10.3390/ijerph181910048" @default.
- W3204124655 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8507671" @default.
- W3204124655 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34639348" @default.
- W3204124655 hasPublicationYear "2021" @default.
- W3204124655 type Work @default.
- W3204124655 sameAs 3204124655 @default.
- W3204124655 citedByCount "0" @default.
- W3204124655 crossrefType "journal-article" @default.
- W3204124655 hasAuthorship W3204124655A5003904999 @default.
- W3204124655 hasAuthorship W3204124655A5012919870 @default.
- W3204124655 hasAuthorship W3204124655A5025441384 @default.
- W3204124655 hasAuthorship W3204124655A5067660587 @default.
- W3204124655 hasBestOaLocation W32041246551 @default.
- W3204124655 hasConcept C107327155 @default.
- W3204124655 hasConcept C118552586 @default.
- W3204124655 hasConcept C119857082 @default.
- W3204124655 hasConcept C12267149 @default.
- W3204124655 hasConcept C134362201 @default.
- W3204124655 hasConcept C154945302 @default.
- W3204124655 hasConcept C15744967 @default.
- W3204124655 hasConcept C160735492 @default.
- W3204124655 hasConcept C162324750 @default.
- W3204124655 hasConcept C41008148 @default.
- W3204124655 hasConcept C50522688 @default.
- W3204124655 hasConcept C63527458 @default.
- W3204124655 hasConcept C71924100 @default.
- W3204124655 hasConcept C75630572 @default.
- W3204124655 hasConcept C95623464 @default.
- W3204124655 hasConceptScore W3204124655C107327155 @default.
- W3204124655 hasConceptScore W3204124655C118552586 @default.
- W3204124655 hasConceptScore W3204124655C119857082 @default.
- W3204124655 hasConceptScore W3204124655C12267149 @default.
- W3204124655 hasConceptScore W3204124655C134362201 @default.
- W3204124655 hasConceptScore W3204124655C154945302 @default.
- W3204124655 hasConceptScore W3204124655C15744967 @default.
- W3204124655 hasConceptScore W3204124655C160735492 @default.
- W3204124655 hasConceptScore W3204124655C162324750 @default.
- W3204124655 hasConceptScore W3204124655C41008148 @default.
- W3204124655 hasConceptScore W3204124655C50522688 @default.
- W3204124655 hasConceptScore W3204124655C63527458 @default.
- W3204124655 hasConceptScore W3204124655C71924100 @default.
- W3204124655 hasConceptScore W3204124655C75630572 @default.
- W3204124655 hasConceptScore W3204124655C95623464 @default.
- W3204124655 hasIssue "19" @default.
- W3204124655 hasLocation W32041246551 @default.
- W3204124655 hasLocation W32041246552 @default.
- W3204124655 hasLocation W32041246553 @default.
- W3204124655 hasOpenAccess W3204124655 @default.
- W3204124655 hasPrimaryLocation W32041246551 @default.
- W3204124655 hasRelatedWork W1996541855 @default.
- W3204124655 hasRelatedWork W2101819884 @default.
- W3204124655 hasRelatedWork W2748952813 @default.
- W3204124655 hasRelatedWork W2899084033 @default.
- W3204124655 hasRelatedWork W2937631562 @default.
- W3204124655 hasRelatedWork W2961085424 @default.