Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204126086> ?p ?o ?g. }
- W3204126086 abstract "Due to continued innovations in onboard data analysis and spacecraft autonomy, enabled by deep learning (DL), modern spacecraft require dependable, high-performance computers to process onboard an immense volume of raw sensor data into actionable information to formulate critical decisions autonomously. To enable compute-intensive DL algorithms, commercial-off-the-shelf processors, including FPGAs and system-on-chips, are often employed for their superior performance, energy-efficiency, and affordability compared to traditional radiation-hardened alternatives; however, these processors are highly susceptible to radiation-induced single-event effects (SEEs) that can degrade the dependability of DL applications. Researchers have created a diverse collection of DL models that perform a variety of tasks useful for Earth-observation missions. However, due to characteristic differences between models and accelerators, their tradeoffs can vary in terms of accuracy, area, performance, energy-efficiency, and dependability, which are factors crucial for resource-constrained and mission-critical systems. To select the optimal DL solution that maximizes inference performance, conserves onboard resources, and satisfies mission dependability requirements, a methodology is required to evaluate and compare the tradeoffs between competing options. In this paper, we propose a methodology for evaluating and analyzing the tradeoffs of FPGA-accelerated DL models, including a hierarchical fault-injection approach to accelerate the characterization of SEE susceptibility of DL solutions in terms of well-established dependability metrics. Furthermore, we identify performance and dependability trends, analyze the impact of SEEs on the inference accuracy, and predict design fault rates for near-Earth orbital environments. To demonstrate the versatility of our methodology, we evaluate and analyze four semantic-segmentation models accelerated on four Xilinx Deep-Learning Processing Unit accelerators." @default.
- W3204126086 created "2021-10-11" @default.
- W3204126086 creator A5025244325 @default.
- W3204126086 creator A5082898376 @default.
- W3204126086 date "2021-08-01" @default.
- W3204126086 modified "2023-09-24" @default.
- W3204126086 title "A Methodology for Evaluating and Analyzing FPGA-Accelerated, Deep-Learning Applications for Onboard Space Processing" @default.
- W3204126086 cites W1901129140 @default.
- W3204126086 cites W1997473119 @default.
- W3204126086 cites W2009950553 @default.
- W3204126086 cites W2116549540 @default.
- W3204126086 cites W2314456252 @default.
- W3204126086 cites W2419448466 @default.
- W3204126086 cites W2565639579 @default.
- W3204126086 cites W2786663883 @default.
- W3204126086 cites W2791339614 @default.
- W3204126086 cites W2804860796 @default.
- W3204126086 cites W2895540242 @default.
- W3204126086 cites W2901414323 @default.
- W3204126086 cites W2903175372 @default.
- W3204126086 cites W2927956055 @default.
- W3204126086 cites W2963367294 @default.
- W3204126086 cites W2963418739 @default.
- W3204126086 cites W2970532173 @default.
- W3204126086 cites W2978158277 @default.
- W3204126086 cites W2981925675 @default.
- W3204126086 cites W3013072087 @default.
- W3204126086 cites W3103089830 @default.
- W3204126086 cites W3104341624 @default.
- W3204126086 doi "https://doi.org/10.1109/scc49971.2021.00022" @default.
- W3204126086 hasPublicationYear "2021" @default.
- W3204126086 type Work @default.
- W3204126086 sameAs 3204126086 @default.
- W3204126086 citedByCount "1" @default.
- W3204126086 countsByYear W32041260862023 @default.
- W3204126086 crossrefType "proceedings-article" @default.
- W3204126086 hasAuthorship W3204126086A5025244325 @default.
- W3204126086 hasAuthorship W3204126086A5082898376 @default.
- W3204126086 hasConcept C104060986 @default.
- W3204126086 hasConcept C111919701 @default.
- W3204126086 hasConcept C113775141 @default.
- W3204126086 hasConcept C115903868 @default.
- W3204126086 hasConcept C119599485 @default.
- W3204126086 hasConcept C120314980 @default.
- W3204126086 hasConcept C127413603 @default.
- W3204126086 hasConcept C146978453 @default.
- W3204126086 hasConcept C149635348 @default.
- W3204126086 hasConcept C154945302 @default.
- W3204126086 hasConcept C187107819 @default.
- W3204126086 hasConcept C199360897 @default.
- W3204126086 hasConcept C200601418 @default.
- W3204126086 hasConcept C206345919 @default.
- W3204126086 hasConcept C2742236 @default.
- W3204126086 hasConcept C2775928411 @default.
- W3204126086 hasConcept C2776214188 @default.
- W3204126086 hasConcept C2777904410 @default.
- W3204126086 hasConcept C29829512 @default.
- W3204126086 hasConcept C31258907 @default.
- W3204126086 hasConcept C41008148 @default.
- W3204126086 hasConcept C42935608 @default.
- W3204126086 hasConcept C77019957 @default.
- W3204126086 hasConcept C79403827 @default.
- W3204126086 hasConcept C98045186 @default.
- W3204126086 hasConceptScore W3204126086C104060986 @default.
- W3204126086 hasConceptScore W3204126086C111919701 @default.
- W3204126086 hasConceptScore W3204126086C113775141 @default.
- W3204126086 hasConceptScore W3204126086C115903868 @default.
- W3204126086 hasConceptScore W3204126086C119599485 @default.
- W3204126086 hasConceptScore W3204126086C120314980 @default.
- W3204126086 hasConceptScore W3204126086C127413603 @default.
- W3204126086 hasConceptScore W3204126086C146978453 @default.
- W3204126086 hasConceptScore W3204126086C149635348 @default.
- W3204126086 hasConceptScore W3204126086C154945302 @default.
- W3204126086 hasConceptScore W3204126086C187107819 @default.
- W3204126086 hasConceptScore W3204126086C199360897 @default.
- W3204126086 hasConceptScore W3204126086C200601418 @default.
- W3204126086 hasConceptScore W3204126086C206345919 @default.
- W3204126086 hasConceptScore W3204126086C2742236 @default.
- W3204126086 hasConceptScore W3204126086C2775928411 @default.
- W3204126086 hasConceptScore W3204126086C2776214188 @default.
- W3204126086 hasConceptScore W3204126086C2777904410 @default.
- W3204126086 hasConceptScore W3204126086C29829512 @default.
- W3204126086 hasConceptScore W3204126086C31258907 @default.
- W3204126086 hasConceptScore W3204126086C41008148 @default.
- W3204126086 hasConceptScore W3204126086C42935608 @default.
- W3204126086 hasConceptScore W3204126086C77019957 @default.
- W3204126086 hasConceptScore W3204126086C79403827 @default.
- W3204126086 hasConceptScore W3204126086C98045186 @default.
- W3204126086 hasFunder F4320306076 @default.
- W3204126086 hasLocation W32041260861 @default.
- W3204126086 hasOpenAccess W3204126086 @default.
- W3204126086 hasPrimaryLocation W32041260861 @default.
- W3204126086 hasRelatedWork W1907270790 @default.
- W3204126086 hasRelatedWork W2021137365 @default.
- W3204126086 hasRelatedWork W2109093620 @default.
- W3204126086 hasRelatedWork W2116536562 @default.
- W3204126086 hasRelatedWork W2122512228 @default.
- W3204126086 hasRelatedWork W2148063504 @default.
- W3204126086 hasRelatedWork W2336403607 @default.
- W3204126086 hasRelatedWork W2524004831 @default.