Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204129738> ?p ?o ?g. }
- W3204129738 endingPage "102544" @default.
- W3204129738 startingPage "102544" @default.
- W3204129738 abstract "• Multiple crowdsourced data are used to reduce label noise in training samples. • We propose multi-map integration model (MMIM) for road extraction.. • The robustness of Deep Convolutional Neural Networks can be improved by MMIM. • Best road extraction accuracy can be achieved on a large-area covering 1059 km 2 . Road extraction from high-resolution remote sensing images (HRSIs) is essential for applications in various areas. Although deep convolutional neural networks (DCNNs) have exhibited remarkable success in road extraction, the performance relies on a large amount of training samples which are hard to obtain. To address this issue, multiple crowdsourced data are used in this study, including OpenStreetMap (OSM), Zmap and GPS. And a multi-map integration model (MMIM) is developed to improve the noise robustness of DCNNs for road extraction tasks. Specifically, rich geographical road information are obtained from multiple crowdsourced data, including main roads, new construction roads, midsize and small roads, which can generate complete road training samples and reduce the label noise. Meanwhile, by exploring the true road label information hidden in different crowdsourced data, the MMIM is used to generate high-quality refined labels for learning DCNNs. In this case, the DCNN-based road extraction methods have more opportunities to learn true road distribution and avoid the overfitting problems of label noise. Experiments based on real road extraction dataset indicate that the proposed method shows great performance, and road extraction results are smoother and more complete." @default.
- W3204129738 created "2021-10-11" @default.
- W3204129738 creator A5000430971 @default.
- W3204129738 creator A5007561000 @default.
- W3204129738 creator A5020469901 @default.
- W3204129738 creator A5022469287 @default.
- W3204129738 creator A5031728782 @default.
- W3204129738 creator A5040270498 @default.
- W3204129738 creator A5044795752 @default.
- W3204129738 creator A5064154809 @default.
- W3204129738 creator A5066321568 @default.
- W3204129738 creator A5079612504 @default.
- W3204129738 creator A5082859009 @default.
- W3204129738 creator A5083202615 @default.
- W3204129738 date "2021-12-01" @default.
- W3204129738 modified "2023-09-26" @default.
- W3204129738 title "Exploring multiple crowdsourced data to learn deep convolutional neural networks for road extraction" @default.
- W3204129738 cites W1955857676 @default.
- W3204129738 cites W2167460663 @default.
- W3204129738 cites W2345157853 @default.
- W3204129738 cites W2395811491 @default.
- W3204129738 cites W2463029075 @default.
- W3204129738 cites W2495231996 @default.
- W3204129738 cites W2552440277 @default.
- W3204129738 cites W2593886839 @default.
- W3204129738 cites W2613610841 @default.
- W3204129738 cites W2755226765 @default.
- W3204129738 cites W2767802855 @default.
- W3204129738 cites W2774320778 @default.
- W3204129738 cites W2780861787 @default.
- W3204129738 cites W2804975550 @default.
- W3204129738 cites W2890022946 @default.
- W3204129738 cites W2894776549 @default.
- W3204129738 cites W2898504016 @default.
- W3204129738 cites W2900518108 @default.
- W3204129738 cites W2922063907 @default.
- W3204129738 cites W2924260171 @default.
- W3204129738 cites W2943898693 @default.
- W3204129738 cites W2949034001 @default.
- W3204129738 cites W2963881378 @default.
- W3204129738 cites W2967073193 @default.
- W3204129738 cites W2970085166 @default.
- W3204129738 cites W2982628450 @default.
- W3204129738 cites W2990095339 @default.
- W3204129738 cites W3025926153 @default.
- W3204129738 cites W3035534403 @default.
- W3204129738 cites W3042587578 @default.
- W3204129738 cites W3048489561 @default.
- W3204129738 cites W3081791696 @default.
- W3204129738 cites W3089241257 @default.
- W3204129738 cites W3100521496 @default.
- W3204129738 cites W3150573203 @default.
- W3204129738 cites W3184553632 @default.
- W3204129738 cites W73112891 @default.
- W3204129738 doi "https://doi.org/10.1016/j.jag.2021.102544" @default.
- W3204129738 hasPublicationYear "2021" @default.
- W3204129738 type Work @default.
- W3204129738 sameAs 3204129738 @default.
- W3204129738 citedByCount "4" @default.
- W3204129738 countsByYear W32041297382022 @default.
- W3204129738 countsByYear W32041297382023 @default.
- W3204129738 crossrefType "journal-article" @default.
- W3204129738 hasAuthorship W3204129738A5000430971 @default.
- W3204129738 hasAuthorship W3204129738A5007561000 @default.
- W3204129738 hasAuthorship W3204129738A5020469901 @default.
- W3204129738 hasAuthorship W3204129738A5022469287 @default.
- W3204129738 hasAuthorship W3204129738A5031728782 @default.
- W3204129738 hasAuthorship W3204129738A5040270498 @default.
- W3204129738 hasAuthorship W3204129738A5044795752 @default.
- W3204129738 hasAuthorship W3204129738A5064154809 @default.
- W3204129738 hasAuthorship W3204129738A5066321568 @default.
- W3204129738 hasAuthorship W3204129738A5079612504 @default.
- W3204129738 hasAuthorship W3204129738A5082859009 @default.
- W3204129738 hasAuthorship W3204129738A5083202615 @default.
- W3204129738 hasBestOaLocation W32041297381 @default.
- W3204129738 hasConcept C104317684 @default.
- W3204129738 hasConcept C108583219 @default.
- W3204129738 hasConcept C119857082 @default.
- W3204129738 hasConcept C124101348 @default.
- W3204129738 hasConcept C153180895 @default.
- W3204129738 hasConcept C154945302 @default.
- W3204129738 hasConcept C185592680 @default.
- W3204129738 hasConcept C22019652 @default.
- W3204129738 hasConcept C41008148 @default.
- W3204129738 hasConcept C50644808 @default.
- W3204129738 hasConcept C52622490 @default.
- W3204129738 hasConcept C55493867 @default.
- W3204129738 hasConcept C60229501 @default.
- W3204129738 hasConcept C63479239 @default.
- W3204129738 hasConcept C76155785 @default.
- W3204129738 hasConcept C81363708 @default.
- W3204129738 hasConceptScore W3204129738C104317684 @default.
- W3204129738 hasConceptScore W3204129738C108583219 @default.
- W3204129738 hasConceptScore W3204129738C119857082 @default.
- W3204129738 hasConceptScore W3204129738C124101348 @default.
- W3204129738 hasConceptScore W3204129738C153180895 @default.
- W3204129738 hasConceptScore W3204129738C154945302 @default.
- W3204129738 hasConceptScore W3204129738C185592680 @default.