Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204137325> ?p ?o ?g. }
- W3204137325 endingPage "7942" @default.
- W3204137325 startingPage "7931" @default.
- W3204137325 abstract "Significant development of ride-sharing services presents a plethora of opportunities to transform urban mobility by providing personalized and convenient transportation while ensuring the efficiency of large-scale ride pooling. However, a core problem for such services is route planning for each driver to fulfill the dynamically arriving requests while satisfying given constraints. Current models are mostly limited to static routes with only two rides per vehicle (optimally) or three (with heuristics) (Alonso-Mora <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>et al.</i> , 2017), at least in the initial allocation while not ascertaining that opposite-direction rides are not grouped together. In this paper, we present a dynamic, demand aware, and pricing-based vehicle-passenger matching and route planning framework that (1) dynamically generates optimal routes for each vehicle based on online demand, pricing associated with each ride, vehicle capacities and locations. This matching algorithm starts greedily and optimizes over time using an insertion operation, (2) involves drivers in the decision-making process by allowing them to propose a different price based on the expected reward for a particular ride as well as the destination locations for future rides, which is influenced by supply-and-demand computed by the Deep Q-network. (3) allows customers to accept or reject rides based on their set of preferences with respect to pricing and delay windows, vehicle type and carpooling preferences. These (1-3) in tandem with each other enforce grouping rides with the most route-intersections together. (4) Based on demand prediction, our approach re-balances idle vehicles by dispatching them to the areas of anticipated high demand using deep Reinforcement Learning (RL). Our framework is validated using millions of trips extracted from the New York City Taxi public dataset; however, we consider different vehicle types and designed customer utility functions to validate the setup and study different settings. Experimental results show the effectiveness of our approach in real-time and large scale settings." @default.
- W3204137325 created "2021-10-11" @default.
- W3204137325 creator A5024270752 @default.
- W3204137325 creator A5040259531 @default.
- W3204137325 creator A5064822688 @default.
- W3204137325 creator A5077320731 @default.
- W3204137325 date "2021-12-01" @default.
- W3204137325 modified "2023-10-11" @default.
- W3204137325 title "A Distributed Model-Free Ride-Sharing Approach for Joint Matching, Pricing, and Dispatching Using Deep Reinforcement Learning" @default.
- W3204137325 cites W1982002004 @default.
- W3204137325 cites W1993912146 @default.
- W3204137325 cites W1994917133 @default.
- W3204137325 cites W2016244040 @default.
- W3204137325 cites W2031128290 @default.
- W3204137325 cites W2105834060 @default.
- W3204137325 cites W2156767060 @default.
- W3204137325 cites W2293541015 @default.
- W3204137325 cites W2339495721 @default.
- W3204137325 cites W2552176588 @default.
- W3204137325 cites W2565420248 @default.
- W3204137325 cites W2565919573 @default.
- W3204137325 cites W2569460227 @default.
- W3204137325 cites W2613597768 @default.
- W3204137325 cites W2615579321 @default.
- W3204137325 cites W2626824504 @default.
- W3204137325 cites W2732901969 @default.
- W3204137325 cites W2792987450 @default.
- W3204137325 cites W2803156588 @default.
- W3204137325 cites W2889125237 @default.
- W3204137325 cites W2906957789 @default.
- W3204137325 cites W2946789497 @default.
- W3204137325 cites W2954428100 @default.
- W3204137325 cites W2955180297 @default.
- W3204137325 cites W2964169391 @default.
- W3204137325 cites W2968301466 @default.
- W3204137325 cites W2972715622 @default.
- W3204137325 cites W3004683339 @default.
- W3204137325 cites W3009669424 @default.
- W3204137325 cites W3013637982 @default.
- W3204137325 cites W3029550486 @default.
- W3204137325 cites W3037675691 @default.
- W3204137325 cites W3040879766 @default.
- W3204137325 cites W3090317827 @default.
- W3204137325 cites W3112032550 @default.
- W3204137325 cites W3125178068 @default.
- W3204137325 cites W3125549756 @default.
- W3204137325 cites W3179601372 @default.
- W3204137325 cites W855132903 @default.
- W3204137325 doi "https://doi.org/10.1109/tits.2021.3096537" @default.
- W3204137325 hasPublicationYear "2021" @default.
- W3204137325 type Work @default.
- W3204137325 sameAs 3204137325 @default.
- W3204137325 citedByCount "27" @default.
- W3204137325 countsByYear W32041373252021 @default.
- W3204137325 countsByYear W32041373252022 @default.
- W3204137325 countsByYear W32041373252023 @default.
- W3204137325 crossrefType "journal-article" @default.
- W3204137325 hasAuthorship W3204137325A5024270752 @default.
- W3204137325 hasAuthorship W3204137325A5040259531 @default.
- W3204137325 hasAuthorship W3204137325A5064822688 @default.
- W3204137325 hasAuthorship W3204137325A5077320731 @default.
- W3204137325 hasBestOaLocation W32041373252 @default.
- W3204137325 hasConcept C105795698 @default.
- W3204137325 hasConcept C111919701 @default.
- W3204137325 hasConcept C126255220 @default.
- W3204137325 hasConcept C127413603 @default.
- W3204137325 hasConcept C127705205 @default.
- W3204137325 hasConcept C154945302 @default.
- W3204137325 hasConcept C162324750 @default.
- W3204137325 hasConcept C165064840 @default.
- W3204137325 hasConcept C175444787 @default.
- W3204137325 hasConcept C2779391423 @default.
- W3204137325 hasConcept C33923547 @default.
- W3204137325 hasConcept C41008148 @default.
- W3204137325 hasConcept C42475967 @default.
- W3204137325 hasConcept C70437156 @default.
- W3204137325 hasConcept C97541855 @default.
- W3204137325 hasConceptScore W3204137325C105795698 @default.
- W3204137325 hasConceptScore W3204137325C111919701 @default.
- W3204137325 hasConceptScore W3204137325C126255220 @default.
- W3204137325 hasConceptScore W3204137325C127413603 @default.
- W3204137325 hasConceptScore W3204137325C127705205 @default.
- W3204137325 hasConceptScore W3204137325C154945302 @default.
- W3204137325 hasConceptScore W3204137325C162324750 @default.
- W3204137325 hasConceptScore W3204137325C165064840 @default.
- W3204137325 hasConceptScore W3204137325C175444787 @default.
- W3204137325 hasConceptScore W3204137325C2779391423 @default.
- W3204137325 hasConceptScore W3204137325C33923547 @default.
- W3204137325 hasConceptScore W3204137325C41008148 @default.
- W3204137325 hasConceptScore W3204137325C42475967 @default.
- W3204137325 hasConceptScore W3204137325C70437156 @default.
- W3204137325 hasConceptScore W3204137325C97541855 @default.
- W3204137325 hasFunder F4320306076 @default.
- W3204137325 hasFunder F4320307791 @default.
- W3204137325 hasIssue "12" @default.
- W3204137325 hasLocation W32041373251 @default.
- W3204137325 hasLocation W32041373252 @default.
- W3204137325 hasOpenAccess W3204137325 @default.