Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204144049> ?p ?o ?g. }
- W3204144049 endingPage "114793" @default.
- W3204144049 startingPage "114793" @default.
- W3204144049 abstract "• Implementation of several ML techniques to investigate performance of degraded FCV. • The Deep Neural Network algorithm has the most accurate prediction among the other. • Dynamic simulation of a fresh & degraded FCV considering environmental aspects. • The life cycle assessment for the fresh and degraded fuel cell vehicles. • Using real driving cycle for a better dynamic simulation. Fuel cell degradation is one of the main challenges of hydrogen fuel cell vehicles, which can be solved by robust prediction techniques like machine learning. In this research, a specific Proton-exchange membrane fuel cell stack is considered, and the experimental data are imported to predict the future behavior of the stack. Besides, four different prediction neural network algorithms are considered, and Deep Neural Network is selected. Furthermore, Simcenter Amesim software is used with the ability of dynamic simulation to calculate real-time fuel consumption, fuel cell degradation, and engine performance. Finally, to better understand how fuel cell degradation affects fuel consumption and life cycle emission, lifecycle assessment as a potential tool is carried out using GREET software. The results show that a degraded Proton-exchange membrane fuel cell stack can result in an increase in fuel consumption by 14.32 % in the New European driving cycle and 13.9 % in the FTP-75 driving cycle. The Life Cycle Assessment analysis results show that fuel cell degradation has a significant effect on fuel consumption and total emission. The results show that a fuel cell with a predicted degradation will emit 26.4 % more CO 2 emissions than a Proton-exchange membrane fuel cell without degradation." @default.
- W3204144049 created "2021-10-11" @default.
- W3204144049 creator A5004412317 @default.
- W3204144049 creator A5047672152 @default.
- W3204144049 creator A5056513469 @default.
- W3204144049 creator A5087235312 @default.
- W3204144049 date "2021-11-01" @default.
- W3204144049 modified "2023-10-17" @default.
- W3204144049 title "Performance analysis of a degraded PEM fuel cell stack for hydrogen passenger vehicles based on machine learning algorithms in real driving conditions" @default.
- W3204144049 cites W1126542692 @default.
- W3204144049 cites W1531115599 @default.
- W3204144049 cites W1973868537 @default.
- W3204144049 cites W1995341919 @default.
- W3204144049 cites W2010922597 @default.
- W3204144049 cites W2018617930 @default.
- W3204144049 cites W2038777449 @default.
- W3204144049 cites W2056628526 @default.
- W3204144049 cites W2102932673 @default.
- W3204144049 cites W2142149402 @default.
- W3204144049 cites W2150355110 @default.
- W3204144049 cites W2402858412 @default.
- W3204144049 cites W2485909853 @default.
- W3204144049 cites W2530278562 @default.
- W3204144049 cites W2726205374 @default.
- W3204144049 cites W2738947734 @default.
- W3204144049 cites W2752974295 @default.
- W3204144049 cites W2766491758 @default.
- W3204144049 cites W2887180341 @default.
- W3204144049 cites W2892180865 @default.
- W3204144049 cites W2895435114 @default.
- W3204144049 cites W2899336917 @default.
- W3204144049 cites W2913751936 @default.
- W3204144049 cites W2916979377 @default.
- W3204144049 cites W2919060222 @default.
- W3204144049 cites W2931695972 @default.
- W3204144049 cites W2939186495 @default.
- W3204144049 cites W2946566992 @default.
- W3204144049 cites W2950583718 @default.
- W3204144049 cites W2982870209 @default.
- W3204144049 cites W2993304931 @default.
- W3204144049 cites W2996740073 @default.
- W3204144049 cites W3004500150 @default.
- W3204144049 cites W3006439999 @default.
- W3204144049 cites W3017228007 @default.
- W3204144049 cites W3018254030 @default.
- W3204144049 cites W3096406436 @default.
- W3204144049 cites W3110735867 @default.
- W3204144049 cites W3118797998 @default.
- W3204144049 cites W3144297986 @default.
- W3204144049 doi "https://doi.org/10.1016/j.enconman.2021.114793" @default.
- W3204144049 hasPublicationYear "2021" @default.
- W3204144049 type Work @default.
- W3204144049 sameAs 3204144049 @default.
- W3204144049 citedByCount "43" @default.
- W3204144049 countsByYear W32041440492022 @default.
- W3204144049 countsByYear W32041440492023 @default.
- W3204144049 crossrefType "journal-article" @default.
- W3204144049 hasAuthorship W3204144049A5004412317 @default.
- W3204144049 hasAuthorship W3204144049A5047672152 @default.
- W3204144049 hasAuthorship W3204144049A5056513469 @default.
- W3204144049 hasAuthorship W3204144049A5087235312 @default.
- W3204144049 hasConcept C11413529 @default.
- W3204144049 hasConcept C119599485 @default.
- W3204144049 hasConcept C121332964 @default.
- W3204144049 hasConcept C127413603 @default.
- W3204144049 hasConcept C132319479 @default.
- W3204144049 hasConcept C139719470 @default.
- W3204144049 hasConcept C154945302 @default.
- W3204144049 hasConcept C162324750 @default.
- W3204144049 hasConcept C163258240 @default.
- W3204144049 hasConcept C169042556 @default.
- W3204144049 hasConcept C171146098 @default.
- W3204144049 hasConcept C199360897 @default.
- W3204144049 hasConcept C2776422217 @default.
- W3204144049 hasConcept C2778348673 @default.
- W3204144049 hasConcept C2778706760 @default.
- W3204144049 hasConcept C2779679103 @default.
- W3204144049 hasConcept C2987658370 @default.
- W3204144049 hasConcept C41008148 @default.
- W3204144049 hasConcept C42360764 @default.
- W3204144049 hasConcept C44154836 @default.
- W3204144049 hasConcept C45882903 @default.
- W3204144049 hasConcept C50644808 @default.
- W3204144049 hasConcept C62520636 @default.
- W3204144049 hasConcept C9395851 @default.
- W3204144049 hasConceptScore W3204144049C11413529 @default.
- W3204144049 hasConceptScore W3204144049C119599485 @default.
- W3204144049 hasConceptScore W3204144049C121332964 @default.
- W3204144049 hasConceptScore W3204144049C127413603 @default.
- W3204144049 hasConceptScore W3204144049C132319479 @default.
- W3204144049 hasConceptScore W3204144049C139719470 @default.
- W3204144049 hasConceptScore W3204144049C154945302 @default.
- W3204144049 hasConceptScore W3204144049C162324750 @default.
- W3204144049 hasConceptScore W3204144049C163258240 @default.
- W3204144049 hasConceptScore W3204144049C169042556 @default.
- W3204144049 hasConceptScore W3204144049C171146098 @default.
- W3204144049 hasConceptScore W3204144049C199360897 @default.
- W3204144049 hasConceptScore W3204144049C2776422217 @default.