Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204150987> ?p ?o ?g. }
- W3204150987 endingPage "106446" @default.
- W3204150987 startingPage "106446" @default.
- W3204150987 abstract "Effectively utilizing disease-relevant text information from unstructured clinical notes for medical research presents many challenges. BERT (Bidirectional Encoder Representation from Transformers) related models such as BioBERT and ClinicalBERT, pre-trained on biomedical corpora and general clinical information, have shown promising performance in various biomedical language processing tasks. This study aims to explore whether a BERT-based model pre-trained on disease-related clinical information can be more effective for cerebrovascular disease-relevant research. This study proposed the StrokeBERT which was initialized from BioBERT and pre-trained on large-scale cerebrovascular disease related clinical text information. The pre-trained corpora contained 113,590 discharge notes, 105,743 radiology reports, and 38,199 neurological reports. Two real-world empirical clinical tasks were conducted to validate StrokeBERT's performance. The first task identified extracranial and intracranial artery stenosis from two independent sets of radiology angiography reports. The second task predicted the risk of recurrent ischemic stroke based on patients’ first discharge information. In stenosis detection, StrokeBERT showed improved performance on targeted carotid arteries, with an average AUC compared to that of ClinicalBERT of 0.968 ± 0.021 and 0.956 ± 0.018, respectively. In recurrent ischemic stroke prediction, after 10-fold cross-validation on 1,700 discharge information, StrokeBERT presented better prediction ability (AUC±SD = 0.838 ± 0.017) than ClinicalBERT (AUC±SD = 0.808 ± 0.045). The attention scores of StrokeBERT showed better ability to detect and associate cerebrovascular disease related terms than current BERT based models. This study shows that a disease-specific BERT model improved the performance and accuracy of various disease-specific language processing tasks and can readily be fine-tuned to advance cerebrovascular disease research and further developed for clinical applications." @default.
- W3204150987 created "2021-10-11" @default.
- W3204150987 creator A5010430268 @default.
- W3204150987 creator A5010968515 @default.
- W3204150987 creator A5037290375 @default.
- W3204150987 creator A5052748912 @default.
- W3204150987 creator A5057602145 @default.
- W3204150987 creator A5074798362 @default.
- W3204150987 creator A5078555166 @default.
- W3204150987 creator A5087798422 @default.
- W3204150987 creator A5091310382 @default.
- W3204150987 date "2021-11-01" @default.
- W3204150987 modified "2023-10-16" @default.
- W3204150987 title "A disease-specific language representation model for cerebrovascular disease research" @default.
- W3204150987 cites W1270312698 @default.
- W3204150987 cites W1480729244 @default.
- W3204150987 cites W1962411705 @default.
- W3204150987 cites W2024316102 @default.
- W3204150987 cites W2027167885 @default.
- W3204150987 cites W2041899993 @default.
- W3204150987 cites W2046206328 @default.
- W3204150987 cites W2090819042 @default.
- W3204150987 cites W2097181212 @default.
- W3204150987 cites W2113962387 @default.
- W3204150987 cites W2119394719 @default.
- W3204150987 cites W2126491128 @default.
- W3204150987 cites W2132247347 @default.
- W3204150987 cites W2134853875 @default.
- W3204150987 cites W2396881363 @default.
- W3204150987 cites W2412702708 @default.
- W3204150987 cites W2737847855 @default.
- W3204150987 cites W2885688423 @default.
- W3204150987 cites W2909003638 @default.
- W3204150987 cites W2911193641 @default.
- W3204150987 cites W2911489562 @default.
- W3204150987 cites W2945068453 @default.
- W3204150987 cites W2946417913 @default.
- W3204150987 cites W2953189769 @default.
- W3204150987 cites W2963716420 @default.
- W3204150987 cites W2972483465 @default.
- W3204150987 cites W2990944701 @default.
- W3204150987 cites W2997200074 @default.
- W3204150987 cites W3007824786 @default.
- W3204150987 cites W3098949126 @default.
- W3204150987 cites W3099750501 @default.
- W3204150987 cites W4229560712 @default.
- W3204150987 cites W2113107835 @default.
- W3204150987 doi "https://doi.org/10.1016/j.cmpb.2021.106446" @default.
- W3204150987 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8551061" @default.
- W3204150987 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34627022" @default.
- W3204150987 hasPublicationYear "2021" @default.
- W3204150987 type Work @default.
- W3204150987 sameAs 3204150987 @default.
- W3204150987 citedByCount "5" @default.
- W3204150987 countsByYear W32041509872023 @default.
- W3204150987 crossrefType "journal-article" @default.
- W3204150987 hasAuthorship W3204150987A5010430268 @default.
- W3204150987 hasAuthorship W3204150987A5010968515 @default.
- W3204150987 hasAuthorship W3204150987A5037290375 @default.
- W3204150987 hasAuthorship W3204150987A5052748912 @default.
- W3204150987 hasAuthorship W3204150987A5057602145 @default.
- W3204150987 hasAuthorship W3204150987A5074798362 @default.
- W3204150987 hasAuthorship W3204150987A5078555166 @default.
- W3204150987 hasAuthorship W3204150987A5087798422 @default.
- W3204150987 hasAuthorship W3204150987A5091310382 @default.
- W3204150987 hasBestOaLocation W32041509871 @default.
- W3204150987 hasConcept C111919701 @default.
- W3204150987 hasConcept C118505674 @default.
- W3204150987 hasConcept C119857082 @default.
- W3204150987 hasConcept C126322002 @default.
- W3204150987 hasConcept C126838900 @default.
- W3204150987 hasConcept C127413603 @default.
- W3204150987 hasConcept C154945302 @default.
- W3204150987 hasConcept C204321447 @default.
- W3204150987 hasConcept C2779134260 @default.
- W3204150987 hasConcept C2780007028 @default.
- W3204150987 hasConcept C2780645631 @default.
- W3204150987 hasConcept C3020199598 @default.
- W3204150987 hasConcept C41008148 @default.
- W3204150987 hasConcept C541997718 @default.
- W3204150987 hasConcept C71924100 @default.
- W3204150987 hasConcept C78519656 @default.
- W3204150987 hasConceptScore W3204150987C111919701 @default.
- W3204150987 hasConceptScore W3204150987C118505674 @default.
- W3204150987 hasConceptScore W3204150987C119857082 @default.
- W3204150987 hasConceptScore W3204150987C126322002 @default.
- W3204150987 hasConceptScore W3204150987C126838900 @default.
- W3204150987 hasConceptScore W3204150987C127413603 @default.
- W3204150987 hasConceptScore W3204150987C154945302 @default.
- W3204150987 hasConceptScore W3204150987C204321447 @default.
- W3204150987 hasConceptScore W3204150987C2779134260 @default.
- W3204150987 hasConceptScore W3204150987C2780007028 @default.
- W3204150987 hasConceptScore W3204150987C2780645631 @default.
- W3204150987 hasConceptScore W3204150987C3020199598 @default.
- W3204150987 hasConceptScore W3204150987C41008148 @default.
- W3204150987 hasConceptScore W3204150987C541997718 @default.
- W3204150987 hasConceptScore W3204150987C71924100 @default.
- W3204150987 hasConceptScore W3204150987C78519656 @default.